Nabil El Moçayd , M. Shadi Mohamed , Mohammed Seaid
{"title":"Data-driven hybrid modelling of waves at mid-frequencies range: Application to forward and inverse Helmholtz problems","authors":"Nabil El Moçayd , M. Shadi Mohamed , Mohammed Seaid","doi":"10.1016/j.jocs.2024.102384","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a novel hybrid approach that leverages both data and numerical simulations to address the challenges of solving forward and inverse wave problems, particularly in the mid-frequency range. Our method is tailored for efficiency and accuracy, considering the computationally intensive nature of these problems, which arise from the need for refined mesh grids and a high number of degrees of freedom. Our approach unfolds in multiple stages, each targeting a specific frequency range. Initially, we decompose the wave field into a grid of finely resolved points, designed to capture the intricate details at various wavenumbers within the frequency range of interest. Importantly, the distribution of these grid points remains consistent across different wavenumbers. Subsequently, we generate a substantial dataset comprising 1,000 maps covering the entire frequency range. Creating such a dataset, especially at higher frequencies, can pose a significant computational challenge. To tackle this, we employ a highly efficient enrichment-based finite element method, ensuring the dataset’s creation is computationally manageable. The dataset which encompasses 1000 different values of the wavenumbers with their corresponding wave simulation will be the basis to train a fully connected neural network. In the forward problem the neural network is trained such that a wave pattern is predicted for each value of the wavenumber. To address the inverse problem while upholding stability, we introduce latent variables to reduce the number of physical parameters. Our trained deep network undergoes rigorous testing for both forward and inverse problems, enabling a direct comparison between predicted solutions and their original counterparts. Once the network is trained, it becomes a powerful tool for accurately solving wave problems in a fraction of the CPU time required by alternative methods. Notably, our approach is supervised, as it relies on a dataset generated through the enriched finite element method, and hyperparameter tuning is carried out for both the forward and inverse networks.</p></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"81 ","pages":"Article 102384"},"PeriodicalIF":3.1000,"publicationDate":"2024-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324001777","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we introduce a novel hybrid approach that leverages both data and numerical simulations to address the challenges of solving forward and inverse wave problems, particularly in the mid-frequency range. Our method is tailored for efficiency and accuracy, considering the computationally intensive nature of these problems, which arise from the need for refined mesh grids and a high number of degrees of freedom. Our approach unfolds in multiple stages, each targeting a specific frequency range. Initially, we decompose the wave field into a grid of finely resolved points, designed to capture the intricate details at various wavenumbers within the frequency range of interest. Importantly, the distribution of these grid points remains consistent across different wavenumbers. Subsequently, we generate a substantial dataset comprising 1,000 maps covering the entire frequency range. Creating such a dataset, especially at higher frequencies, can pose a significant computational challenge. To tackle this, we employ a highly efficient enrichment-based finite element method, ensuring the dataset’s creation is computationally manageable. The dataset which encompasses 1000 different values of the wavenumbers with their corresponding wave simulation will be the basis to train a fully connected neural network. In the forward problem the neural network is trained such that a wave pattern is predicted for each value of the wavenumber. To address the inverse problem while upholding stability, we introduce latent variables to reduce the number of physical parameters. Our trained deep network undergoes rigorous testing for both forward and inverse problems, enabling a direct comparison between predicted solutions and their original counterparts. Once the network is trained, it becomes a powerful tool for accurately solving wave problems in a fraction of the CPU time required by alternative methods. Notably, our approach is supervised, as it relies on a dataset generated through the enriched finite element method, and hyperparameter tuning is carried out for both the forward and inverse networks.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).