{"title":"Identifying influential nodes in complex networks through the k-shell index and neighborhood information","authors":"Shima Esfandiari, Mohammad Reza Moosavi","doi":"10.1016/j.jocs.2024.102473","DOIUrl":null,"url":null,"abstract":"<div><div>Identifying influential nodes is crucial in network science for controlling diseases, sharing information, and viral marketing. Current methods for finding vital spreaders have problems with accuracy, resolution, or time complexity. To address these limitations, this paper presents a hybrid approach called the Bubble Method (BM). First, the BM assumes a bubble with a radius of two surrounding each node. Then, it extracts various attributes from inside and near the surface of the bubble. These attributes are the k-shell index, k-shell diversity, and the distances of nodes within the bubble from the central node. We compared our method to 12 recent ones, including the Hybrid Global Structure model (HGSM) and Generalized Degree Decomposition (GDD), using the Susceptible–Infectious–Recovered (SIR) model to test its effectiveness. The results show the BM outperforms other methods in terms of accuracy, correctness, and resolution. Its low computational complexity renders it highly suitable for analyzing large-scale networks.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"84 ","pages":"Article 102473"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002667","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Identifying influential nodes is crucial in network science for controlling diseases, sharing information, and viral marketing. Current methods for finding vital spreaders have problems with accuracy, resolution, or time complexity. To address these limitations, this paper presents a hybrid approach called the Bubble Method (BM). First, the BM assumes a bubble with a radius of two surrounding each node. Then, it extracts various attributes from inside and near the surface of the bubble. These attributes are the k-shell index, k-shell diversity, and the distances of nodes within the bubble from the central node. We compared our method to 12 recent ones, including the Hybrid Global Structure model (HGSM) and Generalized Degree Decomposition (GDD), using the Susceptible–Infectious–Recovered (SIR) model to test its effectiveness. The results show the BM outperforms other methods in terms of accuracy, correctness, and resolution. Its low computational complexity renders it highly suitable for analyzing large-scale networks.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).