Enhancing multi-omics data classification with relative expression analysis and decision trees

IF 3.1 3区 计算机科学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Journal of Computational Science Pub Date : 2024-11-18 DOI:10.1016/j.jocs.2024.102460
Marcin Czajkowski, Krzysztof Jurczuk, Marek Kretowski
{"title":"Enhancing multi-omics data classification with relative expression analysis and decision trees","authors":"Marcin Czajkowski,&nbsp;Krzysztof Jurczuk,&nbsp;Marek Kretowski","doi":"10.1016/j.jocs.2024.102460","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the Relative Multi-test Classification Tree (RMCT), a novel classification method tailored for multi-omics data analysis. The RMCT method combines the interpretative power of decision trees with the analytical precision of Relative eXpression Analysis (RXA) to address the complex task of examining biomedical data derived from diverse high-throughput technologies. The proposed RMCT approach discerns patterns within and across omics layers, yielding an accurate and interpretable classifier. In each internal node of RMCT, we create a multitest - group of Top-Scoring-Pair tests, that capture the ordering relationships among features from various omics. Multi-tests are optimized for maximal reduction of Gini impurity, and ensuring consistency in decision-making. We address computational challenges by advanced GPU parallelization, remarkably improving RMCT’s time performance. Through experimental validation on diverse multi-omics datasets, RMCT has demonstrated superior performance compared to traditional tree-based solutions, particularly in terms of accuracy and clarity of predictions. This method effectively reveals intricate interactions and relationships within multi-omics data, marking it as a useful addition to bioinformatics and biomedicine. This work represents a thorough extension of our preliminary research, which was initially presented at the twenty-third edition of the International Conference on Computational Science (ICCS). It expands the initial concept of integrating decision trees with RXA for multi-omics data classification, deepening the analytical methodologies, further optimizing the GPU computing, and broadening the experimental validation.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"84 ","pages":"Article 102460"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002539","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces the Relative Multi-test Classification Tree (RMCT), a novel classification method tailored for multi-omics data analysis. The RMCT method combines the interpretative power of decision trees with the analytical precision of Relative eXpression Analysis (RXA) to address the complex task of examining biomedical data derived from diverse high-throughput technologies. The proposed RMCT approach discerns patterns within and across omics layers, yielding an accurate and interpretable classifier. In each internal node of RMCT, we create a multitest - group of Top-Scoring-Pair tests, that capture the ordering relationships among features from various omics. Multi-tests are optimized for maximal reduction of Gini impurity, and ensuring consistency in decision-making. We address computational challenges by advanced GPU parallelization, remarkably improving RMCT’s time performance. Through experimental validation on diverse multi-omics datasets, RMCT has demonstrated superior performance compared to traditional tree-based solutions, particularly in terms of accuracy and clarity of predictions. This method effectively reveals intricate interactions and relationships within multi-omics data, marking it as a useful addition to bioinformatics and biomedicine. This work represents a thorough extension of our preliminary research, which was initially presented at the twenty-third edition of the International Conference on Computational Science (ICCS). It expands the initial concept of integrating decision trees with RXA for multi-omics data classification, deepening the analytical methodologies, further optimizing the GPU computing, and broadening the experimental validation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用相对表达分析和决策树加强多组学数据分类
本研究介绍了为多组学数据分析量身定制的新型分类方法--相对多检验分类树(RMCT)。RMCT 方法结合了决策树的解释能力和相对表达分析(RXA)的分析精度,以解决检查来自不同高通量技术的生物医学数据的复杂任务。所提出的 RMCT 方法能辨别 omics 层内和层间的模式,从而产生准确且可解释的分类器。在 RMCT 的每个内部节点中,我们创建了一个多测试(Top-Scoring-Pair 测试组),这些测试捕捉了来自不同 omics 的特征之间的排序关系。我们对多重测试进行了优化,以最大限度地减少基尼不纯度,并确保决策的一致性。我们通过先进的 GPU 并行化解决了计算难题,显著提高了 RMCT 的时间性能。通过在不同的多组学数据集上进行实验验证,RMCT 与传统的基于树的解决方案相比表现出了更优越的性能,尤其是在预测的准确性和清晰度方面。这种方法能有效揭示多组学数据中错综复杂的相互作用和关系,是生物信息学和生物医学的有益补充。这项工作是对我们最初在第二十三届国际计算科学大会(ICCS)上发表的初步研究成果的全面扩展。它扩展了将决策树与 RXA 集成用于多组学数据分类的最初概念,深化了分析方法,进一步优化了 GPU 计算,并扩大了实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Computational Science
Journal of Computational Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
5.50
自引率
3.00%
发文量
227
审稿时长
41 days
期刊介绍: Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory. The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation. This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods. Computational science typically unifies three distinct elements: • Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous); • Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems; • Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).
期刊最新文献
Editorial Board perms: Likelihood-free estimation of marginal likelihoods for binary response data in Python and R On-the-fly mathematical formulation for estimating people flow from elevator load data in smart building virtual sensing platforms Enhancing multi-omics data classification with relative expression analysis and decision trees Identifying influential nodes in complex networks through the k-shell index and neighborhood information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1