Marcin Czajkowski, Krzysztof Jurczuk, Marek Kretowski
{"title":"Enhancing multi-omics data classification with relative expression analysis and decision trees","authors":"Marcin Czajkowski, Krzysztof Jurczuk, Marek Kretowski","doi":"10.1016/j.jocs.2024.102460","DOIUrl":null,"url":null,"abstract":"<div><div>This study introduces the Relative Multi-test Classification Tree (RMCT), a novel classification method tailored for multi-omics data analysis. The RMCT method combines the interpretative power of decision trees with the analytical precision of Relative eXpression Analysis (RXA) to address the complex task of examining biomedical data derived from diverse high-throughput technologies. The proposed RMCT approach discerns patterns within and across omics layers, yielding an accurate and interpretable classifier. In each internal node of RMCT, we create a multitest - group of Top-Scoring-Pair tests, that capture the ordering relationships among features from various omics. Multi-tests are optimized for maximal reduction of Gini impurity, and ensuring consistency in decision-making. We address computational challenges by advanced GPU parallelization, remarkably improving RMCT’s time performance. Through experimental validation on diverse multi-omics datasets, RMCT has demonstrated superior performance compared to traditional tree-based solutions, particularly in terms of accuracy and clarity of predictions. This method effectively reveals intricate interactions and relationships within multi-omics data, marking it as a useful addition to bioinformatics and biomedicine. This work represents a thorough extension of our preliminary research, which was initially presented at the twenty-third edition of the International Conference on Computational Science (ICCS). It expands the initial concept of integrating decision trees with RXA for multi-omics data classification, deepening the analytical methodologies, further optimizing the GPU computing, and broadening the experimental validation.</div></div>","PeriodicalId":48907,"journal":{"name":"Journal of Computational Science","volume":"84 ","pages":"Article 102460"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877750324002539","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This study introduces the Relative Multi-test Classification Tree (RMCT), a novel classification method tailored for multi-omics data analysis. The RMCT method combines the interpretative power of decision trees with the analytical precision of Relative eXpression Analysis (RXA) to address the complex task of examining biomedical data derived from diverse high-throughput technologies. The proposed RMCT approach discerns patterns within and across omics layers, yielding an accurate and interpretable classifier. In each internal node of RMCT, we create a multitest - group of Top-Scoring-Pair tests, that capture the ordering relationships among features from various omics. Multi-tests are optimized for maximal reduction of Gini impurity, and ensuring consistency in decision-making. We address computational challenges by advanced GPU parallelization, remarkably improving RMCT’s time performance. Through experimental validation on diverse multi-omics datasets, RMCT has demonstrated superior performance compared to traditional tree-based solutions, particularly in terms of accuracy and clarity of predictions. This method effectively reveals intricate interactions and relationships within multi-omics data, marking it as a useful addition to bioinformatics and biomedicine. This work represents a thorough extension of our preliminary research, which was initially presented at the twenty-third edition of the International Conference on Computational Science (ICCS). It expands the initial concept of integrating decision trees with RXA for multi-omics data classification, deepening the analytical methodologies, further optimizing the GPU computing, and broadening the experimental validation.
期刊介绍:
Computational Science is a rapidly growing multi- and interdisciplinary field that uses advanced computing and data analysis to understand and solve complex problems. It has reached a level of predictive capability that now firmly complements the traditional pillars of experimentation and theory.
The recent advances in experimental techniques such as detectors, on-line sensor networks and high-resolution imaging techniques, have opened up new windows into physical and biological processes at many levels of detail. The resulting data explosion allows for detailed data driven modeling and simulation.
This new discipline in science combines computational thinking, modern computational methods, devices and collateral technologies to address problems far beyond the scope of traditional numerical methods.
Computational science typically unifies three distinct elements:
• Modeling, Algorithms and Simulations (e.g. numerical and non-numerical, discrete and continuous);
• Software developed to solve science (e.g., biological, physical, and social), engineering, medicine, and humanities problems;
• Computer and information science that develops and optimizes the advanced system hardware, software, networking, and data management components (e.g. problem solving environments).