Andrea Muñoz-Ayala, Brenda Chimal-Vega, Nicolás Serafín-Higuera, Octavio Galindo-Hernández, Gladys Ramírez-Rosales, Iván Córdova-Guerrero, Luis Fernando Gómez-Lucas, Victor García-González
{"title":"Tamoxifen metabolites treatment promotes ERα+ transition to triple negative phenotype in vitro, effects of LDL in chemoresistance.","authors":"Andrea Muñoz-Ayala, Brenda Chimal-Vega, Nicolás Serafín-Higuera, Octavio Galindo-Hernández, Gladys Ramírez-Rosales, Iván Córdova-Guerrero, Luis Fernando Gómez-Lucas, Victor García-González","doi":"10.1042/BSR20240444","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Estrogen receptor-positive (ER+) breast cancer represents about 80% of cases, tamoxifen is the election neoadjuvant chemotherapy. However, a large percentage of patients develop chemoresistance, compromising recovery. Clinical evidence suggests that high plasmatic levels of low-density lipoproteins (LDL) could promote cancer progression. The present study analyzed the effect of LDL on the primary plasmatic active Tamoxifen's metabolites resistance acquisition, 4-hydroxytamoxifen (4OH-Tam) and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen), in breast cancer ERα + cells (MCF-7).</p><p><strong>Methods: </strong>Two resistant cellular variants, MCF-7Var-H and MCF-7Var-I, were generated by a novel strategy and their phenotype features were evaluated. Phenotypic assessment was performed by MTT assays, cytometry, immunofluorescence microscopy, zymography and protein expression analysis.</p><p><strong>Results: </strong>MCF-7Var-H, generated only with tamoxifen metabolites, showed a critical down-regulation in hormone receptors, augmented migration capacity, metalloprotease 9 extracellular medium excretion, and a mesenchymal morphology in contrast with native MCF-7, suggesting the transition towards Triple-negative breast cancer (TNBC) phenotype. In contrast, MCF-7Var-I which was generated in a high LDL media, showed only a slight upregulation in ER and other less noticeable metabolic adaptations. Results suggest a potential role of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in phenotypic differences observed among variants.</p><p><strong>Conclusion: </strong>LDL high or low concentrations during Tamoxifen´s metabolites chemoresistance acquisition leads to different cellular mechanisms related to chemoresistance. A novel adaptative cellular response associated with Nrf2 activity could be implicated.</p>","PeriodicalId":8926,"journal":{"name":"Bioscience Reports","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11301570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BSR20240444","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Estrogen receptor-positive (ER+) breast cancer represents about 80% of cases, tamoxifen is the election neoadjuvant chemotherapy. However, a large percentage of patients develop chemoresistance, compromising recovery. Clinical evidence suggests that high plasmatic levels of low-density lipoproteins (LDL) could promote cancer progression. The present study analyzed the effect of LDL on the primary plasmatic active Tamoxifen's metabolites resistance acquisition, 4-hydroxytamoxifen (4OH-Tam) and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen), in breast cancer ERα + cells (MCF-7).
Methods: Two resistant cellular variants, MCF-7Var-H and MCF-7Var-I, were generated by a novel strategy and their phenotype features were evaluated. Phenotypic assessment was performed by MTT assays, cytometry, immunofluorescence microscopy, zymography and protein expression analysis.
Results: MCF-7Var-H, generated only with tamoxifen metabolites, showed a critical down-regulation in hormone receptors, augmented migration capacity, metalloprotease 9 extracellular medium excretion, and a mesenchymal morphology in contrast with native MCF-7, suggesting the transition towards Triple-negative breast cancer (TNBC) phenotype. In contrast, MCF-7Var-I which was generated in a high LDL media, showed only a slight upregulation in ER and other less noticeable metabolic adaptations. Results suggest a potential role of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) in phenotypic differences observed among variants.
Conclusion: LDL high or low concentrations during Tamoxifen´s metabolites chemoresistance acquisition leads to different cellular mechanisms related to chemoresistance. A novel adaptative cellular response associated with Nrf2 activity could be implicated.
期刊介绍:
Bioscience Reports provides a home for sound scientific research in all areas of cell biology and molecular life sciences.
Since 2012, Bioscience Reports has been fully Open Access and publishes all papers under the liberal CC BY licence, giving the life science community quality research to share and discuss.Content before 2012 is subscription-only, and is accessible via archive purchase.
Articles are assessed on soundness, providing a home for valid findings and data.
We welcome papers that span disciplines (e.g. chemistry, medicine), including papers describing:
-new methodologies
-tools and reagents to probe biological questions
-mechanistic details
-disease mechanisms
-metabolic processes and their regulation
-structure and function
-bioenergetics