Nonlinear encoding in diffractive information processing using linear optical materials

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-07-23 DOI:10.1038/s41377-024-01529-8
Yuhang Li, Jingxi Li, Aydogan Ozcan
{"title":"Nonlinear encoding in diffractive information processing using linear optical materials","authors":"Yuhang Li, Jingxi Li, Aydogan Ozcan","doi":"10.1038/s41377-024-01529-8","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear encoding of optical information can be achieved using various forms of data representation. Here, we analyze the performances of different nonlinear information encoding strategies that can be employed in diffractive optical processors based on linear materials and shed light on their utility and performance gaps compared to the state-of-the-art digital deep neural networks. For a comprehensive evaluation, we used different datasets to compare the statistical inference performance of simpler-to-implement nonlinear encoding strategies that involve, e.g., phase encoding, against data repetition-based nonlinear encoding strategies. We show that data repetition within a diffractive volume (e.g., through an optical cavity or cascaded introduction of the input data) causes the loss of the universal linear transformation capability of a diffractive optical processor. Therefore, data repetition-based diffractive blocks cannot provide optical analogs to fully connected or convolutional layers commonly employed in digital neural networks. However, they can still be effectively trained for specific inference tasks and achieve enhanced accuracy, benefiting from the nonlinear encoding of the input information. Our results also reveal that phase encoding of input information without data repetition provides a simpler nonlinear encoding strategy with comparable statistical inference accuracy to data repetition-based diffractive processors. Our analyses and conclusions would be of broad interest to explore the push-pull relationship between linear material-based diffractive optical systems and nonlinear encoding strategies in visual information processors.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01529-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Nonlinear encoding of optical information can be achieved using various forms of data representation. Here, we analyze the performances of different nonlinear information encoding strategies that can be employed in diffractive optical processors based on linear materials and shed light on their utility and performance gaps compared to the state-of-the-art digital deep neural networks. For a comprehensive evaluation, we used different datasets to compare the statistical inference performance of simpler-to-implement nonlinear encoding strategies that involve, e.g., phase encoding, against data repetition-based nonlinear encoding strategies. We show that data repetition within a diffractive volume (e.g., through an optical cavity or cascaded introduction of the input data) causes the loss of the universal linear transformation capability of a diffractive optical processor. Therefore, data repetition-based diffractive blocks cannot provide optical analogs to fully connected or convolutional layers commonly employed in digital neural networks. However, they can still be effectively trained for specific inference tasks and achieve enhanced accuracy, benefiting from the nonlinear encoding of the input information. Our results also reveal that phase encoding of input information without data repetition provides a simpler nonlinear encoding strategy with comparable statistical inference accuracy to data repetition-based diffractive processors. Our analyses and conclusions would be of broad interest to explore the push-pull relationship between linear material-based diffractive optical systems and nonlinear encoding strategies in visual information processors.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用线性光学材料在衍射信息处理中进行非线性编码
光学信息的非线性编码可以通过各种形式的数据表示来实现。在此,我们分析了可用于基于线性材料的衍射光学处理器的不同非线性信息编码策略的性能,并阐明了它们与最先进的数字深度神经网络相比的效用和性能差距。为了进行综合评估,我们使用了不同的数据集,比较了相位编码等简单易用的非线性编码策略与基于数据重复的非线性编码策略的统计推断性能。我们的研究表明,在衍射体积内重复数据(如通过光腔或级联引入输入数据)会导致衍射光学处理器丧失通用线性变换能力。因此,基于数据重复的衍射块无法提供与数字神经网络中常用的全连接层或卷积层类似的光学功能。不过,它们仍然可以针对特定的推理任务进行有效的训练,并从输入信息的非线性编码中获益,从而提高准确性。我们的研究结果还表明,不重复数据的输入信息相位编码提供了一种更简单的非线性编码策略,其统计推断精度与基于数据重复的衍射处理器相当。我们的分析和结论对于探索基于线性材料的衍射光学系统与视觉信息处理器中的非线性编码策略之间的推拉关系具有广泛的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Ultra-fast light-field microscopy with event detection Quantum sensing with optically accessible spin defects in van der Waals layered materials Polaritons light up future displays Color-conversion displays: current status and future outlook Dynamic synthetic-scanning photoacoustic tracking monitors hepatic and renal clearance pathway of exogeneous probes in vivo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1