Siqi Tang, Kaixin Wei, Hao Huang, Xinghua Li, Yuxin Min, Jiayi Tai, Yi Xu, Lei Chen, Shimeng Yan, Qiangqiang Xiong, Xiaojun Li
{"title":"Effect of soil factors on flavonoid metabolites in Striga asiatica using LC–MS based on untargeted metabolomics","authors":"Siqi Tang, Kaixin Wei, Hao Huang, Xinghua Li, Yuxin Min, Jiayi Tai, Yi Xu, Lei Chen, Shimeng Yan, Qiangqiang Xiong, Xiaojun Li","doi":"10.1186/s40538-024-00614-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p><i>Striga asiatica</i> (L.) O. Kuntze is a traditional medicinal plant rich in flavonoids, which has various pharmacological effects such as anti-hepatitis and antioxidant activities. However, there is a scarcity of resources, and artificial cultivation has not yet been achieved. This study explored the association between flavonoid metabolites and soil physicochemical properties and trace elements in different habitats, with the aim of offering theoretical guidance for the high-quality artificial cultivation of <i>S. asiatica</i>.</p><h3>Results</h3><p>The results showed that <i>S. asiatica</i> has low requirements for soil fertility and prefers to grow in acidic soil with high contents of potassium and available potassium, while low contents of phosphorus, nitrogen and alkali hydrolyzed nitrogen. Additionally, 1592 kinds of metabolites were identified from <i>S. asiatica</i>, including 78 flavonoids.</p><h3>Conclusions</h3><p>The flavonoid metabolites were strongly related to soil factors. Reasonable application of nitrogen and potassium fertilizers as well as controlling the contents of sodium, manganese and boron in the soil, can promote the synthesis of flavonoid metabolites in the plant. Moreover, kaempferide, glycitein, luteolin, apigenin and genistein may be the metabolic markers for identifying different regions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00614-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00614-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Striga asiatica (L.) O. Kuntze is a traditional medicinal plant rich in flavonoids, which has various pharmacological effects such as anti-hepatitis and antioxidant activities. However, there is a scarcity of resources, and artificial cultivation has not yet been achieved. This study explored the association between flavonoid metabolites and soil physicochemical properties and trace elements in different habitats, with the aim of offering theoretical guidance for the high-quality artificial cultivation of S. asiatica.
Results
The results showed that S. asiatica has low requirements for soil fertility and prefers to grow in acidic soil with high contents of potassium and available potassium, while low contents of phosphorus, nitrogen and alkali hydrolyzed nitrogen. Additionally, 1592 kinds of metabolites were identified from S. asiatica, including 78 flavonoids.
Conclusions
The flavonoid metabolites were strongly related to soil factors. Reasonable application of nitrogen and potassium fertilizers as well as controlling the contents of sodium, manganese and boron in the soil, can promote the synthesis of flavonoid metabolites in the plant. Moreover, kaempferide, glycitein, luteolin, apigenin and genistein may be the metabolic markers for identifying different regions.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.