Min Jeong Cho, Donghwi Hwang, Si Young Yie, Jae Sung Lee
{"title":"Multi-modal co-learning with attention mechanism for head and neck tumor segmentation on <sup>18</sup>FDG PET-CT.","authors":"Min Jeong Cho, Donghwi Hwang, Si Young Yie, Jae Sung Lee","doi":"10.1186/s40658-024-00670-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Effective radiation therapy requires accurate segmentation of head and neck cancer, one of the most common types of cancer. With the advancement of deep learning, people have come up with various methods that use positron emission tomography-computed tomography to get complementary information. However, these approaches are computationally expensive because of the separation of feature extraction and fusion functions and do not make use of the high sensitivity of PET. We propose a new deep learning-based approach to alleviate these challenges.</p><p><strong>Methods: </strong>We proposed a tumor region attention module that fully exploits the high sensitivity of PET and designed a network that learns the correlation between the PET and CT features using squeeze-and-excitation normalization (SE Norm) without separating the feature extraction and fusion functions. In addition, we introduce multi-scale context fusion, which exploits contextual information from different scales.</p><p><strong>Results: </strong>The HECKTOR challenge 2021 dataset was used for training and testing. The proposed model outperformed the state-of-the-art models for medical image segmentation; in particular, the dice similarity coefficient increased by 8.78% compared to U-net.</p><p><strong>Conclusion: </strong>The proposed network segmented the complex shape of the tumor better than the state-of-the-art medical image segmentation methods, accurately distinguishing between tumor and non-tumor regions.</p>","PeriodicalId":11559,"journal":{"name":"EJNMMI Physics","volume":"11 1","pages":"67"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11272764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EJNMMI Physics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40658-024-00670-y","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Effective radiation therapy requires accurate segmentation of head and neck cancer, one of the most common types of cancer. With the advancement of deep learning, people have come up with various methods that use positron emission tomography-computed tomography to get complementary information. However, these approaches are computationally expensive because of the separation of feature extraction and fusion functions and do not make use of the high sensitivity of PET. We propose a new deep learning-based approach to alleviate these challenges.
Methods: We proposed a tumor region attention module that fully exploits the high sensitivity of PET and designed a network that learns the correlation between the PET and CT features using squeeze-and-excitation normalization (SE Norm) without separating the feature extraction and fusion functions. In addition, we introduce multi-scale context fusion, which exploits contextual information from different scales.
Results: The HECKTOR challenge 2021 dataset was used for training and testing. The proposed model outperformed the state-of-the-art models for medical image segmentation; in particular, the dice similarity coefficient increased by 8.78% compared to U-net.
Conclusion: The proposed network segmented the complex shape of the tumor better than the state-of-the-art medical image segmentation methods, accurately distinguishing between tumor and non-tumor regions.
期刊介绍:
EJNMMI Physics is an international platform for scientists, users and adopters of nuclear medicine with a particular interest in physics matters. As a companion journal to the European Journal of Nuclear Medicine and Molecular Imaging, this journal has a multi-disciplinary approach and welcomes original materials and studies with a focus on applied physics and mathematics as well as imaging systems engineering and prototyping in nuclear medicine. This includes physics-driven approaches or algorithms supported by physics that foster early clinical adoption of nuclear medicine imaging and therapy.