Miha Modic, Klara Kuret, Sebastian Steinhauser, Rupert Faraway, Emiel van Genderen, Igor Ruiz de Los Mozos, Jona Novljan, Žiga Vičič, Flora C. Y. Lee, Derk ten Berge, Nicholas M. Luscombe, Jernej Ule
{"title":"Poised PABP–RNA hubs implement signal-dependent mRNA decay in development","authors":"Miha Modic, Klara Kuret, Sebastian Steinhauser, Rupert Faraway, Emiel van Genderen, Igor Ruiz de Los Mozos, Jona Novljan, Žiga Vičič, Flora C. Y. Lee, Derk ten Berge, Nicholas M. Luscombe, Jernej Ule","doi":"10.1038/s41594-024-01363-x","DOIUrl":null,"url":null,"abstract":"Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)–mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK–MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3′ untranslated region (3′UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3′UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A–PABP convergence, which enhances PABP 3′UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP–RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression. Here the authors show that, upon embryo implantation, signaling triggers a large-scale rearrangement of protein–RNA interactions. Phosphorylated LIN28A reassembles onto the 3′ untranslated region termini of pluripotency-associated mRNAs, where it converges with the binding of poly(A)-binding protein and drives selective mRNA decay.","PeriodicalId":49141,"journal":{"name":"Nature Structural & Molecular Biology","volume":"31 9","pages":"1439-1447"},"PeriodicalIF":12.5000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41594-024-01363-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Structural & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41594-024-01363-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Signaling pathways drive cell fate transitions largely by changing gene expression. However, the mechanisms for rapid and selective transcriptome rewiring in response to signaling cues remain elusive. Here we use deep learning to deconvolve both the sequence determinants and the trans-acting regulators that trigger extracellular signal-regulated kinase (ERK)–mitogen-activated protein kinase kinase (MEK)-induced decay of the naive pluripotency mRNAs. Timing of decay is coupled to embryo implantation through ERK–MEK phosphorylation of LIN28A, which repositions pLIN28A to the highly A+U-rich 3′ untranslated region (3′UTR) termini of naive pluripotency mRNAs. Interestingly, these A+U-rich 3′UTR termini serve as poly(A)-binding protein (PABP)-binding hubs, poised for signal-induced convergence with LIN28A. The multivalency of AUU motifs determines the efficacy of pLIN28A–PABP convergence, which enhances PABP 3′UTR binding, decreases the protection of poly(A) tails and activates mRNA decay to enable progression toward primed pluripotency. Thus, the signal-induced convergence of LIN28A with PABP–RNA hubs drives the rapid selection of naive mRNAs for decay, enabling the transcriptome remodeling that ensures swift developmental progression. Here the authors show that, upon embryo implantation, signaling triggers a large-scale rearrangement of protein–RNA interactions. Phosphorylated LIN28A reassembles onto the 3′ untranslated region termini of pluripotency-associated mRNAs, where it converges with the binding of poly(A)-binding protein and drives selective mRNA decay.
期刊介绍:
Nature Structural & Molecular Biology is a comprehensive platform that combines structural and molecular research. Our journal focuses on exploring the functional and mechanistic aspects of biological processes, emphasizing how molecular components collaborate to achieve a particular function. While structural data can shed light on these insights, our publication does not require them as a prerequisite.