Gyula Halasi, Csaba Vass, Ka Man Yu, Gábor Vári, Arnold P. Farkas, Krisztián Palotás, András Berkó, János Kiss, Zoltán Kónya, Martin Aeschlimann, Benjamin Stadtmüller, Péter Dombi, László Óvári
{"title":"Enhancing the dipole ring of hexagonal boron nitride nanomesh by surface alloying","authors":"Gyula Halasi, Csaba Vass, Ka Man Yu, Gábor Vári, Arnold P. Farkas, Krisztián Palotás, András Berkó, János Kiss, Zoltán Kónya, Martin Aeschlimann, Benjamin Stadtmüller, Péter Dombi, László Óvári","doi":"10.1038/s41699-024-00487-4","DOIUrl":null,"url":null,"abstract":"Surface templating by electrostatic surface potentials is the least invasive way to design large-scale artificial nanostructures. However, generating sufficiently large potential gradients remains challenging. Here, we lay the groundwork for significantly enhancing local electrostatic fields by chemical modification of the surface. We consider the hexagonal boron nitride (h-BN) nanomesh on Rh(111), which already exhibits small surface potential gradients between its pore and wire regions. Using photoemission spectroscopy, we show that adding Au atoms to the Rh(111) surface layer leads to a local migration of Au atoms below the wire regions of the nanomesh. This significantly increases the local work function difference between the pore and wire regions that can be quantified experimentally by the changes in the h-BN valence band structure. Using density functional theory, we identify an electron transfer from Rh to Au as the microscopic origin for the local enhancement of potential gradients within the h-BN nanomesh.","PeriodicalId":19227,"journal":{"name":"npj 2D Materials and Applications","volume":" ","pages":"1-10"},"PeriodicalIF":9.1000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41699-024-00487-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj 2D Materials and Applications","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41699-024-00487-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Surface templating by electrostatic surface potentials is the least invasive way to design large-scale artificial nanostructures. However, generating sufficiently large potential gradients remains challenging. Here, we lay the groundwork for significantly enhancing local electrostatic fields by chemical modification of the surface. We consider the hexagonal boron nitride (h-BN) nanomesh on Rh(111), which already exhibits small surface potential gradients between its pore and wire regions. Using photoemission spectroscopy, we show that adding Au atoms to the Rh(111) surface layer leads to a local migration of Au atoms below the wire regions of the nanomesh. This significantly increases the local work function difference between the pore and wire regions that can be quantified experimentally by the changes in the h-BN valence band structure. Using density functional theory, we identify an electron transfer from Rh to Au as the microscopic origin for the local enhancement of potential gradients within the h-BN nanomesh.
期刊介绍:
npj 2D Materials and Applications publishes papers on the fundamental behavior, synthesis, properties and applications of existing and emerging 2D materials. By selecting papers with the potential for impact, the journal aims to facilitate the transfer of the research of 2D materials into wide-ranging applications.