Thermophysical traits of hybrid nanofluids in cleanroom air handling unit: An experimental study

Sujoy Kumar Dolui, A. Veeresh Babu, T. Srinivas Reddy
{"title":"Thermophysical traits of hybrid nanofluids in cleanroom air handling unit: An experimental study","authors":"Sujoy Kumar Dolui, A. Veeresh Babu, T. Srinivas Reddy","doi":"10.1177/09544089241266442","DOIUrl":null,"url":null,"abstract":"Nanofluids, comprising colloidal suspensions of non-metallic or metallic nanoparticles dispersed in conventional base fluids, are crucial for augmenting heat transfer properties across numerous industrial sectors. Cleanroom facilities play a vital role in diverse industries by regulating contamination levels and environmental parameters to ensure optimal operational conditions. In this paper, thermophysical characteristics of mono nanofluids (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–water, CuO–water) and hybrid nanofluid (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–CuO–water) at various nanoparticle concentrations (1%, 1.5%, 2%, 2.5%, 3%, 3.5% and 4%) on a prototype cleanroom air handling chiller unit was investigated experimentally. An experimental investigation on the thermophysical characteristics of mono and hybrid nanofluids in a prototype cleanroom air handling chiller unit heat exchanger with an increasing nanoparticle volume concentration from 1% to 4% revealed that the density increased by 9.27%, 16.67% and 25.91%; specific heat decreased by 2.53%, 2.66% and 2.17%; thermal conductivity increased by 15.71%, 14.70% and 16.67%; and dynamic viscosity increased by 32.94%, 32.47% and 32.90% for Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–water, CuO–water and hybrid (Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>–CuO–water) nanofluids, respectively, in comparison with water. The novelty of this research lies in its investigation of hybrid nanofluids tailored for cleanroom air handling units, aiming to enhance heat transfer efficiency, offering valuable insights by characterising thermophysical traits and assessing their performance for advancing cleanroom technology, addressing a significant research gap in the field.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":"9 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241266442","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nanofluids, comprising colloidal suspensions of non-metallic or metallic nanoparticles dispersed in conventional base fluids, are crucial for augmenting heat transfer properties across numerous industrial sectors. Cleanroom facilities play a vital role in diverse industries by regulating contamination levels and environmental parameters to ensure optimal operational conditions. In this paper, thermophysical characteristics of mono nanofluids (Al2O3–water, CuO–water) and hybrid nanofluid (Al2O3–CuO–water) at various nanoparticle concentrations (1%, 1.5%, 2%, 2.5%, 3%, 3.5% and 4%) on a prototype cleanroom air handling chiller unit was investigated experimentally. An experimental investigation on the thermophysical characteristics of mono and hybrid nanofluids in a prototype cleanroom air handling chiller unit heat exchanger with an increasing nanoparticle volume concentration from 1% to 4% revealed that the density increased by 9.27%, 16.67% and 25.91%; specific heat decreased by 2.53%, 2.66% and 2.17%; thermal conductivity increased by 15.71%, 14.70% and 16.67%; and dynamic viscosity increased by 32.94%, 32.47% and 32.90% for Al2O3–water, CuO–water and hybrid (Al2O3–CuO–water) nanofluids, respectively, in comparison with water. The novelty of this research lies in its investigation of hybrid nanofluids tailored for cleanroom air handling units, aiming to enhance heat transfer efficiency, offering valuable insights by characterising thermophysical traits and assessing their performance for advancing cleanroom technology, addressing a significant research gap in the field.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
洁净室空气处理装置中混合纳米流体的热物理特性:实验研究
纳米流体由分散在传统基础流体中的非金属或金属纳米颗粒胶体悬浮液组成,对于提高众多工业领域的传热性能至关重要。洁净室设施通过调节污染水平和环境参数来确保最佳的操作条件,在各行各业中发挥着至关重要的作用。本文通过实验研究了不同纳米粒子浓度(1%、1.5%、2%、2.5%、3%、3.5% 和 4%)的单纳米流体(Al2O3-水、CuO-水)和混合纳米流体(Al2O3-CuO-水)在原型洁净室空气处理冷水机组上的热物理特性。实验研究了单纳米流体和混合纳米流体在原型洁净室空气处理冷水机组热交换器中的热物理特性,当纳米粒子体积浓度从 1%增加到 4%时,密度分别增加了 9.27%、16.67% 和 25.91%;比热降低了 2.5%。与水相比,Al2O3-水、CuO-水和混合(Al2O3-CuO-水)纳米流体的比热分别降低了 2.53%、2.66% 和 2.17%;导热系数分别增加了 15.71%、14.70% 和 16.67%;动态粘度分别增加了 32.94%、32.47% 和 32.90%。这项研究的新颖之处在于研究了为洁净室空气处理单元量身定制的混合纳米流体,旨在提高传热效率,通过表征热物理特性和评估其性能,为推进洁净室技术提供有价值的见解,填补了该领域的重大研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
16.70%
发文量
370
审稿时长
6 months
期刊介绍: The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.
期刊最新文献
Tailoring mechanical, microstructural and toughening characteristics of plasma-sprayed graphene-reinforced samarium niobate coatings for extreme environments Influence of carbon percentage on the wear and friction characteristics of ATOMET 4601 alloys in heavy-duty machinery Tribological behavior of Ni-based composite coatings produced by cold spray Multi-objective optimization of 3D printing parameters to fabricate TPU for tribological applications Multi-fidelity multidisciplinary meta-model based optimization of a slender body with fins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1