Tribological behavior of Ni-based composite coatings produced by cold spray

Rohit Kumar Singh Gautam, Vivek Mani Tripathi, Jitendra Kumar Gautam, Subhash Mishra, Hemant Nautiyal, Raj Bahadur Singh, Pushkar Jha, Sudesh Singh
{"title":"Tribological behavior of Ni-based composite coatings produced by cold spray","authors":"Rohit Kumar Singh Gautam, Vivek Mani Tripathi, Jitendra Kumar Gautam, Subhash Mishra, Hemant Nautiyal, Raj Bahadur Singh, Pushkar Jha, Sudesh Singh","doi":"10.1177/09544089241280696","DOIUrl":null,"url":null,"abstract":"The current experiment examined the friction and wear characteristics of Ni-based composite coatings developed by cold spray route. In the developed coatings, fixed concentration of MoS<jats:sub>2</jats:sub> (10 wt. %) and varying concentrations of Ag (5, 10, and 15 wt. %) were incorporated to evaluate the lubricating potential of reinforcing elements. The specimens were slid in various working regimes of loads (6, 11, 16, &amp; 21 N) and at a fixed sliding speed of 0.3 m/s under room temperature (RT). According to the investigation, all participating composite coatings have revealed a lower coefficient of friction (COF) and wear rate as the testing load increased from 6 to 16 N, beyond which a reverse trend was recorded till 21 N. However, composite coating with 10 wt. % Ag has shown excellent tribological properties in terms of the lowest COF (0.29) as well as wear rate (4.0 × 10<jats:sup>−5</jats:sup> mm<jats:sup>3</jats:sup>/Nm) at 16 N and 0.3 m/s. The superior tribological characteristics of the aforesaid coating have been explained and well connected to the synergistic effect of solid lubricants (Ag and MoS<jats:sub>2</jats:sub>) as well as the optimal weight percent of Ag in the creation of tribo layer on the wear track.","PeriodicalId":20552,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544089241280696","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The current experiment examined the friction and wear characteristics of Ni-based composite coatings developed by cold spray route. In the developed coatings, fixed concentration of MoS2 (10 wt. %) and varying concentrations of Ag (5, 10, and 15 wt. %) were incorporated to evaluate the lubricating potential of reinforcing elements. The specimens were slid in various working regimes of loads (6, 11, 16, & 21 N) and at a fixed sliding speed of 0.3 m/s under room temperature (RT). According to the investigation, all participating composite coatings have revealed a lower coefficient of friction (COF) and wear rate as the testing load increased from 6 to 16 N, beyond which a reverse trend was recorded till 21 N. However, composite coating with 10 wt. % Ag has shown excellent tribological properties in terms of the lowest COF (0.29) as well as wear rate (4.0 × 10−5 mm3/Nm) at 16 N and 0.3 m/s. The superior tribological characteristics of the aforesaid coating have been explained and well connected to the synergistic effect of solid lubricants (Ag and MoS2) as well as the optimal weight percent of Ag in the creation of tribo layer on the wear track.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
冷喷法生产的镍基复合涂层的摩擦学行为
本实验研究了通过冷喷工艺开发的镍基复合涂层的摩擦和磨损特性。在开发的涂层中,加入了固定浓度的 MoS2(10 wt.%)和不同浓度的 Ag(5、10 和 15 wt.%),以评估增强元素的润滑潜力。在室温(RT)条件下,试样以 0.3 米/秒的固定滑动速度在不同载荷(6、11、16、&;21 牛顿)下滑动。调查显示,随着测试载荷从 6 牛顿增加到 16 牛顿,所有参与研究的复合涂层都显示出较低的摩擦系数(COF)和磨损率,超过这一载荷后,在 21 牛顿之前则出现了相反的趋势。上述涂层之所以具有优异的摩擦学特性,与固体润滑剂(Ag 和 MoS2)的协同作用以及在磨损轨道上形成三聚层时最佳的 Ag 重量百分比密切相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.80
自引率
16.70%
发文量
370
审稿时长
6 months
期刊介绍: The Journal of Process Mechanical Engineering publishes high-quality, peer-reviewed papers covering a broad area of mechanical engineering activities associated with the design and operation of process equipment.
期刊最新文献
Tailoring mechanical, microstructural and toughening characteristics of plasma-sprayed graphene-reinforced samarium niobate coatings for extreme environments Influence of carbon percentage on the wear and friction characteristics of ATOMET 4601 alloys in heavy-duty machinery Tribological behavior of Ni-based composite coatings produced by cold spray Multi-objective optimization of 3D printing parameters to fabricate TPU for tribological applications Multi-fidelity multidisciplinary meta-model based optimization of a slender body with fins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1