Exerting pulling forces in fluids by directional disassembly of microcrystalline fibres

IF 38.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Nature nanotechnology Pub Date : 2024-07-29 DOI:10.1038/s41565-024-01742-x
L. C. Pantaleone, E. Calicchia, J. Martinelli, M. C. A. Stuart, Y. Y. Lopatina, W. R. Browne, G. Portale, K. M. Tych, T. Kudernac
{"title":"Exerting pulling forces in fluids by directional disassembly of microcrystalline fibres","authors":"L. C. Pantaleone, E. Calicchia, J. Martinelli, M. C. A. Stuart, Y. Y. Lopatina, W. R. Browne, G. Portale, K. M. Tych, T. Kudernac","doi":"10.1038/s41565-024-01742-x","DOIUrl":null,"url":null,"abstract":"Biomolecular polymerization motors are biochemical systems that use supramolecular (de-)polymerization to convert chemical potential into useful mechanical work. With the intent to explore new chemomechanical transduction strategies, here we show a synthetic molecular system that can generate forces via the controlled disassembly of self-organized molecules in a crystal lattice, as they are freely suspended in a fluid. An amphiphilic monomer self-assembles into rigid, high-aspect-ratio microcrystalline fibres. The assembly process is regulated by a coumarin-based pH switching motif. The microfibre crystal morphology determines the monomer reactivity at the interface, resulting in anisotropic etching. This effect exerts a directional pulling force on microscopic beads adsorbed on the crystal surface through weak multivalent interactions. We use optical-tweezers-based force spectroscopy to extract mechanistic insights into this process, quantifying a stall force of 2.3 pN (±0.1 pN) exerted by the ratcheting mechanism produced by the disassembly of the microfibres. Disassembling molecular microcrystalline fibres produce mechanical work by dragging micro objects along their surface via biased diffusion.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01742-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01742-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomolecular polymerization motors are biochemical systems that use supramolecular (de-)polymerization to convert chemical potential into useful mechanical work. With the intent to explore new chemomechanical transduction strategies, here we show a synthetic molecular system that can generate forces via the controlled disassembly of self-organized molecules in a crystal lattice, as they are freely suspended in a fluid. An amphiphilic monomer self-assembles into rigid, high-aspect-ratio microcrystalline fibres. The assembly process is regulated by a coumarin-based pH switching motif. The microfibre crystal morphology determines the monomer reactivity at the interface, resulting in anisotropic etching. This effect exerts a directional pulling force on microscopic beads adsorbed on the crystal surface through weak multivalent interactions. We use optical-tweezers-based force spectroscopy to extract mechanistic insights into this process, quantifying a stall force of 2.3 pN (±0.1 pN) exerted by the ratcheting mechanism produced by the disassembly of the microfibres. Disassembling molecular microcrystalline fibres produce mechanical work by dragging micro objects along their surface via biased diffusion.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过定向分解微晶纤维在流体中施加拉力
生物分子聚合马达是一种利用超分子(去)聚合作用将化学势转化为有用机械功的生物化学系统。为了探索新的化学机械传导策略,我们在这里展示了一种合成分子系统,当它们自由悬浮在流体中时,可以通过控制晶格中自组织分子的分解来产生力。一种两亲性单体可自组装成刚性、高纵横比的微晶纤维。组装过程由一种基于香豆素的 pH 值切换图案调节。微纤维晶体形态决定了界面上的单体反应性,从而导致各向异性蚀刻。这种效应通过微弱的多价相互作用,对吸附在晶体表面的微珠产生定向拉力。我们使用基于光学镊子的力谱仪来提取这一过程的机理,量化了微纤维解体产生的棘轮机制所产生的 2.3 pN(±0.1 pN)的滞留力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature nanotechnology
Nature nanotechnology 工程技术-材料科学:综合
CiteScore
59.70
自引率
0.80%
发文量
196
审稿时长
4-8 weeks
期刊介绍: Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations. Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.
期刊最新文献
Engineering modular and tunable single-molecule sensors by decoupling sensing from signal output Targeted intervention in nerve–cancer crosstalk enhances pancreatic cancer chemotherapy Blue lasers using low-toxicity colloidal quantum dots Universal control of four singlet–triplet qubits Small structural changes in siloxane-based lipidoids improve tissue-specific mRNA delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1