L. C. Pantaleone, E. Calicchia, J. Martinelli, M. C. A. Stuart, Y. Y. Lopatina, W. R. Browne, G. Portale, K. M. Tych, T. Kudernac
{"title":"Exerting pulling forces in fluids by directional disassembly of microcrystalline fibres","authors":"L. C. Pantaleone, E. Calicchia, J. Martinelli, M. C. A. Stuart, Y. Y. Lopatina, W. R. Browne, G. Portale, K. M. Tych, T. Kudernac","doi":"10.1038/s41565-024-01742-x","DOIUrl":null,"url":null,"abstract":"Biomolecular polymerization motors are biochemical systems that use supramolecular (de-)polymerization to convert chemical potential into useful mechanical work. With the intent to explore new chemomechanical transduction strategies, here we show a synthetic molecular system that can generate forces via the controlled disassembly of self-organized molecules in a crystal lattice, as they are freely suspended in a fluid. An amphiphilic monomer self-assembles into rigid, high-aspect-ratio microcrystalline fibres. The assembly process is regulated by a coumarin-based pH switching motif. The microfibre crystal morphology determines the monomer reactivity at the interface, resulting in anisotropic etching. This effect exerts a directional pulling force on microscopic beads adsorbed on the crystal surface through weak multivalent interactions. We use optical-tweezers-based force spectroscopy to extract mechanistic insights into this process, quantifying a stall force of 2.3 pN (±0.1 pN) exerted by the ratcheting mechanism produced by the disassembly of the microfibres. Disassembling molecular microcrystalline fibres produce mechanical work by dragging micro objects along their surface via biased diffusion.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":null,"pages":null},"PeriodicalIF":38.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41565-024-01742-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-024-01742-x","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomolecular polymerization motors are biochemical systems that use supramolecular (de-)polymerization to convert chemical potential into useful mechanical work. With the intent to explore new chemomechanical transduction strategies, here we show a synthetic molecular system that can generate forces via the controlled disassembly of self-organized molecules in a crystal lattice, as they are freely suspended in a fluid. An amphiphilic monomer self-assembles into rigid, high-aspect-ratio microcrystalline fibres. The assembly process is regulated by a coumarin-based pH switching motif. The microfibre crystal morphology determines the monomer reactivity at the interface, resulting in anisotropic etching. This effect exerts a directional pulling force on microscopic beads adsorbed on the crystal surface through weak multivalent interactions. We use optical-tweezers-based force spectroscopy to extract mechanistic insights into this process, quantifying a stall force of 2.3 pN (±0.1 pN) exerted by the ratcheting mechanism produced by the disassembly of the microfibres. Disassembling molecular microcrystalline fibres produce mechanical work by dragging micro objects along their surface via biased diffusion.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.