Study of high-frequency impedance of zinc-rich coatings

Xiao Feng, Tian-Yu Wang, Fang-Yuan Cao, De-Ming Xie, Hai-Hua Li
{"title":"Study of high-frequency impedance of zinc-rich coatings","authors":"Xiao Feng, Tian-Yu Wang, Fang-Yuan Cao, De-Ming Xie, Hai-Hua Li","doi":"10.1177/1478422x241264926","DOIUrl":null,"url":null,"abstract":"In this paper, three types of impedance spectra were investigated, i.e., impedance spectra of two zinc powders (new and old) and five coatings (two different thicknesses of epoxy zinc-rich coatings (EZRCs), an ethyl silicate zinc-rich coating, an epoxy coating and an autodeposition coating) in 3.5 wt.% NaCl solution, dry film impedance spectra of two coatings (the thicker EZRC and autodeposition coating) and their impedance spectra in a 0.003 M LiCl–methanol solution. The results show that the resistive part of the high-frequency impedance of the ZRCs at the early stage of immersion is the contact resistance ( Rm) between the zinc powders, and the capacitive part is the parallel connection of the contact capacitance ( Cm) and the film capacitance ( Cc) of the binder. The coupling of the two capacitors results in a deviation of the measured Pm from the true Pm, where Pm is the Cm-dependent dispersion coefficient","PeriodicalId":517061,"journal":{"name":"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control","volume":"64 16","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Engineering, Science and Technology: The International Journal of Corrosion Processes and Corrosion Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/1478422x241264926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, three types of impedance spectra were investigated, i.e., impedance spectra of two zinc powders (new and old) and five coatings (two different thicknesses of epoxy zinc-rich coatings (EZRCs), an ethyl silicate zinc-rich coating, an epoxy coating and an autodeposition coating) in 3.5 wt.% NaCl solution, dry film impedance spectra of two coatings (the thicker EZRC and autodeposition coating) and their impedance spectra in a 0.003 M LiCl–methanol solution. The results show that the resistive part of the high-frequency impedance of the ZRCs at the early stage of immersion is the contact resistance ( Rm) between the zinc powders, and the capacitive part is the parallel connection of the contact capacitance ( Cm) and the film capacitance ( Cc) of the binder. The coupling of the two capacitors results in a deviation of the measured Pm from the true Pm, where Pm is the Cm-dependent dispersion coefficient
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富锌涂层的高频阻抗研究
本文研究了三种阻抗光谱,即两种锌粉(新锌粉和旧锌粉)和五种涂层(两种不同厚度的环氧富锌涂层(EZRC)、硅酸乙酯富锌涂层、环氧涂层和自沉积涂层)在 3.5 wt.% 氯化钠溶液中的阻抗谱、两种涂层(较厚的 EZRC 和自沉积涂层)的干膜阻抗谱以及它们在 0.003 M 氯化锂-甲醇溶液中的阻抗谱。结果表明,ZRC 在浸泡初期的高频阻抗的电阻部分是锌粉之间的接触电阻(Rm),电容部分是接触电容(Cm)和粘结剂薄膜电容(Cc)的并联。两个电容的耦合导致测量的 Pm 与真实的 Pm 存在偏差,其中 Pm 是与 Cm 相关的分散系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrosion failure analysis of nuts and locking device assembly at airliner hatch door rods Study of high-frequency impedance of zinc-rich coatings Biogenic corrosion inhibition through Bacillus coagulans on mild steel in mild acidic medium Computational optimisation and modelling of sacrificial anode placement and dimension for maximising the corrosion prevention of screw piles Effective electrode preparation and evaluation of crevice-free steel electrodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1