{"title":"Evaluation of rock cutting performance of conical cutting tool based on commonly measured rock properties","authors":"","doi":"10.1016/j.trgeo.2024.101318","DOIUrl":null,"url":null,"abstract":"<div><p>Efficiency of rock cutting process plays a critical role in performance of mechanical excavation units. The composition of cutting forces (normal and drag force acting on cutting tools) and the total force (F<sub>T</sub>), specific energy (SE), and percent of fine material (FM) produced in cutting process are important indicators of efficient cutting process. The other key factors in assessment of machine performance are tool wear, energy consumption, dust production, and machine maintenance, availability, and utilization. In this study, small scale linear cutting experiments were performed with a conical pick on thirteen sedimentary and metamorphic weak to medium strength rock samples at a range of 0.5 to 6 mm cutting depths in unrelieved cutting mode. F<sub>T</sub> was measured by using a 3D dynamometer and recorded by the data acquisition system, and FM was determined by sieve analysis. Finally, SE was calculated using both the cutting force signal and the volume of the cuttings for each test. Subsequently, an analysis of the effective cutting geometry was performed based on cutting depth, using the specific energy as an indicator of cutting efficiency. Statistical and regression analysis was used to correlate F<sub>T</sub>, SE, and FM with the rock properties and cutting geometry. The results revealed that the uniaxial compressive strength, Schmidt rebound number, and density are the main parameters that affect F<sub>T</sub> and SE, and the brittleness index is the main parameter that affects FM. A nonlinear predictive model is introduced that offers a reasonable estimate of F<sub>T</sub>, SE, and FM to assist engineers in determining the effective operational cutting geometry for a given rock type for unrelieved cuts.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001399","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Efficiency of rock cutting process plays a critical role in performance of mechanical excavation units. The composition of cutting forces (normal and drag force acting on cutting tools) and the total force (FT), specific energy (SE), and percent of fine material (FM) produced in cutting process are important indicators of efficient cutting process. The other key factors in assessment of machine performance are tool wear, energy consumption, dust production, and machine maintenance, availability, and utilization. In this study, small scale linear cutting experiments were performed with a conical pick on thirteen sedimentary and metamorphic weak to medium strength rock samples at a range of 0.5 to 6 mm cutting depths in unrelieved cutting mode. FT was measured by using a 3D dynamometer and recorded by the data acquisition system, and FM was determined by sieve analysis. Finally, SE was calculated using both the cutting force signal and the volume of the cuttings for each test. Subsequently, an analysis of the effective cutting geometry was performed based on cutting depth, using the specific energy as an indicator of cutting efficiency. Statistical and regression analysis was used to correlate FT, SE, and FM with the rock properties and cutting geometry. The results revealed that the uniaxial compressive strength, Schmidt rebound number, and density are the main parameters that affect FT and SE, and the brittleness index is the main parameter that affects FM. A nonlinear predictive model is introduced that offers a reasonable estimate of FT, SE, and FM to assist engineers in determining the effective operational cutting geometry for a given rock type for unrelieved cuts.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.