{"title":"Revealing the role and working mechanism of confined ionic liquids in solid polymer composite electrolytes","authors":"","doi":"10.1016/j.jechem.2024.07.027","DOIUrl":null,"url":null,"abstract":"<div><p>The confined ionic liquid (IL) in solid polymer composite electrolytes (SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambiguous. Herein, IL was immobilized on SiO<sub>2</sub> (SiO<sub>2</sub>@IL-C) and then used to prepare the confined SCPEs together with LiTFSI and PEO to study the impacts of confined-IL on the properties and performance of electrolytes and reveal the Li<sup>+</sup> transport mechanism. The results show that, compared to the IL-unconfined SCPE, the IL-confined ones exhibit better performance of electrolytes and cells, such as higher ionic conductivity, higher <em>t</em><sub>Li</sub><sup>+</sup>, and wider electrochemical windows, as well as more stable cycle performance, due to the increased dissociation degree of lithium salt and enlarged polymer amorphousness. The finite-element/molecular-dynamics simulations suggest that the IL confined on the SiO<sub>2</sub> provided an additional Li<sup>+</sup> transport pathway (Li<sup>+</sup> → SiO<sub>2</sub>@IL-C) that can accelerate ion transfer and alleviate lithium dendrites, leading to ultrastable stripping/plating cycling over 1900 h for the Li/SCPEs/Li symmetric cells. This study demonstrates that IL-confinement is an effective strategy for the intelligent approach of high-performance lithium metal batteries.</p></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":null,"pages":null},"PeriodicalIF":13.1000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209549562400500X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0
Abstract
The confined ionic liquid (IL) in solid polymer composite electrolytes (SCPEs) can improve the performance of lithium metal batteries. However, the impact/role and working mechanism of confined IL in SCPEs remain ambiguous. Herein, IL was immobilized on SiO2 (SiO2@IL-C) and then used to prepare the confined SCPEs together with LiTFSI and PEO to study the impacts of confined-IL on the properties and performance of electrolytes and reveal the Li+ transport mechanism. The results show that, compared to the IL-unconfined SCPE, the IL-confined ones exhibit better performance of electrolytes and cells, such as higher ionic conductivity, higher tLi+, and wider electrochemical windows, as well as more stable cycle performance, due to the increased dissociation degree of lithium salt and enlarged polymer amorphousness. The finite-element/molecular-dynamics simulations suggest that the IL confined on the SiO2 provided an additional Li+ transport pathway (Li+ → SiO2@IL-C) that can accelerate ion transfer and alleviate lithium dendrites, leading to ultrastable stripping/plating cycling over 1900 h for the Li/SCPEs/Li symmetric cells. This study demonstrates that IL-confinement is an effective strategy for the intelligent approach of high-performance lithium metal batteries.
期刊介绍:
The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies.
This journal focuses on original research papers covering various topics within energy chemistry worldwide, including:
Optimized utilization of fossil energy
Hydrogen energy
Conversion and storage of electrochemical energy
Capture, storage, and chemical conversion of carbon dioxide
Materials and nanotechnologies for energy conversion and storage
Chemistry in biomass conversion
Chemistry in the utilization of solar energy