Haroon RASHID, Xiao-tao LUO, Xin-yuan DONG, Li ZHANG, Chang-jiu LI
{"title":"Plasma-sprayed Al-based coating with WC-addition for excellent corrosion resistance and enhanced wear protection of Mg alloys","authors":"Haroon RASHID, Xiao-tao LUO, Xin-yuan DONG, Li ZHANG, Chang-jiu LI","doi":"10.1016/S1003-6326(24)66540-4","DOIUrl":null,"url":null,"abstract":"<div><p>Thermal spray processes struggle to create a fully dense coating for corrosion protection in the as-sprayed state due to the poor inter-splat bonding. To tackle this problem, Al−15vol.%WC was utilized as the coating material and applied by atmospheric plasma spraying (APS) to produce a dense coating with self-metallurgical inter-splat bonding. The results show that due to the in-flight particle deoxidizing effect by C element and self-metallurgical bonding of the overheated droplet (>1800 °C), dense coating without oxides inclusions is produced under optimized plasma spraying conditions. The fully dense Al−WC coating exhibits excellent corrosion resistance, with corrosion current density lower by four and two orders than that of Mg alloy substrate and bulk Al, respectively. Due to the inclusion of hard WC particles, the Al−WC coating presents one order improvement in wear resistance compared with the bulk Al.</p></div>","PeriodicalId":23191,"journal":{"name":"Transactions of Nonferrous Metals Society of China","volume":"34 7","pages":"Pages 2275-2288"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1003632624665404/pdf?md5=1802d229aa6e7e7b75b95fce1b89d8d1&pid=1-s2.0-S1003632624665404-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of Nonferrous Metals Society of China","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1003632624665404","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal spray processes struggle to create a fully dense coating for corrosion protection in the as-sprayed state due to the poor inter-splat bonding. To tackle this problem, Al−15vol.%WC was utilized as the coating material and applied by atmospheric plasma spraying (APS) to produce a dense coating with self-metallurgical inter-splat bonding. The results show that due to the in-flight particle deoxidizing effect by C element and self-metallurgical bonding of the overheated droplet (>1800 °C), dense coating without oxides inclusions is produced under optimized plasma spraying conditions. The fully dense Al−WC coating exhibits excellent corrosion resistance, with corrosion current density lower by four and two orders than that of Mg alloy substrate and bulk Al, respectively. Due to the inclusion of hard WC particles, the Al−WC coating presents one order improvement in wear resistance compared with the bulk Al.
期刊介绍:
The Transactions of Nonferrous Metals Society of China (Trans. Nonferrous Met. Soc. China), founded in 1991 and sponsored by The Nonferrous Metals Society of China, is published monthly now and mainly contains reports of original research which reflect the new progresses in the field of nonferrous metals science and technology, including mineral processing, extraction metallurgy, metallic materials and heat treatments, metal working, physical metallurgy, powder metallurgy, with the emphasis on fundamental science. It is the unique preeminent publication in English for scientists, engineers, under/post-graduates on the field of nonferrous metals industry. This journal is covered by many famous abstract/index systems and databases such as SCI Expanded, Ei Compendex Plus, INSPEC, CA, METADEX, AJ and JICST.