Jacob Knight, Paula García-Galindo, Johannes Pausch, Gunnar Pruessner
{"title":"Memoryless chemotaxis with discrete cues.","authors":"Jacob Knight, Paula García-Galindo, Johannes Pausch, Gunnar Pruessner","doi":"10.1098/rsif.2024.0100","DOIUrl":null,"url":null,"abstract":"<p><p>Biological systems such as axonal growth cones perform chemotaxis at micrometre-level length scales, where chemotactic molecules are sparse. Such systems lie outside the range of validity of existing models, which assume smoothly varying chemical gradients. We investigate the effect of introducing <i>discrete</i> chemoattractant molecules by constructing a minimal dynamical model consisting of a chemotactic cell without internal memory. Significant differences are found in the behaviour of the cell as the chemical gradient is changed from smoothly varying to discrete, including the emergence of a homing radius beyond which chemotaxis is not reliably performed.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 216","pages":"20240100"},"PeriodicalIF":3.7000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2024.0100","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Biological systems such as axonal growth cones perform chemotaxis at micrometre-level length scales, where chemotactic molecules are sparse. Such systems lie outside the range of validity of existing models, which assume smoothly varying chemical gradients. We investigate the effect of introducing discrete chemoattractant molecules by constructing a minimal dynamical model consisting of a chemotactic cell without internal memory. Significant differences are found in the behaviour of the cell as the chemical gradient is changed from smoothly varying to discrete, including the emergence of a homing radius beyond which chemotaxis is not reliably performed.
期刊介绍:
J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.