Wide-field, high-resolution reconstruction in computational multi-aperture miniscope using a Fourier neural network

IF 8.4 1区 物理与天体物理 Q1 OPTICS Optica Pub Date : 2024-05-28 DOI:10.1364/optica.523636
Qianwan Yang, Ruipeng Guo, Guorong Hu, Yujia Xue, Yunzhe Li, Lei Tian
{"title":"Wide-field, high-resolution reconstruction in computational multi-aperture miniscope using a Fourier neural network","authors":"Qianwan Yang, Ruipeng Guo, Guorong Hu, Yujia Xue, Yunzhe Li, Lei Tian","doi":"10.1364/optica.523636","DOIUrl":null,"url":null,"abstract":"Traditional fluorescence microscopy is constrained by inherent trade-offs among resolution, field of view, and system complexity. To navigate these challenges, we introduce a simple and low-cost computational multi-aperture miniature microscope, utilizing a microlens array for single-shot wide-field, high-resolution imaging. Addressing the challenges posed by extensive view multiplexing and non-local, shift-variant aberrations in this device, we present SV-FourierNet, a multi-channel Fourier neural network. SV-FourierNet facilitates high-resolution image reconstruction across the entire imaging field through its learned global receptive field. We establish a close relationship between the physical spatially varying point-spread functions and the network’s learned effective receptive field. This ensures that SV-FourierNet has effectively encapsulated the spatially varying aberrations in our system and learned a physically meaningful function for image reconstruction. Training of SV-FourierNet is conducted entirely on a physics-based simulator. We showcase wide-field, high-resolution video reconstructions on colonies of freely moving <jats:italic toggle=\"yes\">C. elegans</jats:italic> and imaging of a mouse brain section. Our computational multi-aperture miniature microscope, augmented with SV-FourierNet, represents a major advancement in computational microscopy and may find broad applications in biomedical research and other fields requiring compact microscopy solutions.","PeriodicalId":19515,"journal":{"name":"Optica","volume":"51 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optica","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1364/optica.523636","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Traditional fluorescence microscopy is constrained by inherent trade-offs among resolution, field of view, and system complexity. To navigate these challenges, we introduce a simple and low-cost computational multi-aperture miniature microscope, utilizing a microlens array for single-shot wide-field, high-resolution imaging. Addressing the challenges posed by extensive view multiplexing and non-local, shift-variant aberrations in this device, we present SV-FourierNet, a multi-channel Fourier neural network. SV-FourierNet facilitates high-resolution image reconstruction across the entire imaging field through its learned global receptive field. We establish a close relationship between the physical spatially varying point-spread functions and the network’s learned effective receptive field. This ensures that SV-FourierNet has effectively encapsulated the spatially varying aberrations in our system and learned a physically meaningful function for image reconstruction. Training of SV-FourierNet is conducted entirely on a physics-based simulator. We showcase wide-field, high-resolution video reconstructions on colonies of freely moving C. elegans and imaging of a mouse brain section. Our computational multi-aperture miniature microscope, augmented with SV-FourierNet, represents a major advancement in computational microscopy and may find broad applications in biomedical research and other fields requiring compact microscopy solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用傅立叶神经网络在计算多孔径微型显微镜中进行宽视场高分辨率重建
传统的荧光显微镜受到分辨率、视场和系统复杂性之间固有权衡的限制。为了应对这些挑战,我们推出了一种简单、低成本的计算多光圈微型显微镜,利用微透镜阵列进行单次宽视场高分辨率成像。为了应对该设备中广泛的视图多路复用和非局部位移变异像差所带来的挑战,我们推出了 SV-FourierNet,一种多通道傅立叶神经网络。SV-FourierNet 通过其学习到的全局感受野,促进了整个成像区域的高分辨率图像重建。我们在物理空间变化点扩散函数和网络学习到的有效感受野之间建立了密切的关系。这确保了 SV-FourierNet 能够有效地囊括我们系统中的空间变化畸变,并学习到对图像重建有物理意义的函数。SV-FourierNet 的训练完全在基于物理的模拟器上进行。我们展示了在自由移动的秀丽隐杆线虫菌落上进行的宽视场高分辨率视频重建,以及小鼠大脑切片的成像。我们的计算多光圈微型显微镜采用 SV-FourierNet 技术,是计算显微镜领域的一大进步,可广泛应用于生物医学研究和其他需要紧凑型显微镜解决方案的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optica
Optica OPTICS-
CiteScore
19.70
自引率
2.90%
发文量
191
审稿时长
2 months
期刊介绍: Optica is an open access, online-only journal published monthly by Optica Publishing Group. It is dedicated to the rapid dissemination of high-impact peer-reviewed research in the field of optics and photonics. The journal provides a forum for theoretical or experimental, fundamental or applied research to be swiftly accessed by the international community. Optica is abstracted and indexed in Chemical Abstracts Service, Current Contents/Physical, Chemical & Earth Sciences, and Science Citation Index Expanded.
期刊最新文献
Integrated chirped photonic-crystal cavities in gallium phosphide for broadband soliton generation Photonic quantum walk with ultrafast time-bin encoding Control-free and efficient integrated photonic neural networks via hardware-aware training and pruning Piezoelectrically tunable, narrow linewidth photonic integrated extended-DBR lasers Hyperentanglement quantum communication over a 50 km noisy fiber channel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1