Dynamic attention guider network

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Computing Pub Date : 2024-07-30 DOI:10.1007/s00607-024-01328-4
Chunguang Yue, Jinbao Li, Qichen Wang, Donghuan Zhang
{"title":"Dynamic attention guider network","authors":"Chunguang Yue, Jinbao Li, Qichen Wang, Donghuan Zhang","doi":"10.1007/s00607-024-01328-4","DOIUrl":null,"url":null,"abstract":"<p>Hybrid networks, benefiting from both CNNs and Transformers architectures, exhibit stronger feature extraction capabilities compared to standalone CNNs or Transformers. However, in hybrid networks, the lack of attention in CNNs or insufficient refinement in attention mechanisms hinder the highlighting of target regions. Additionally, the computational cost of self-attention in Transformers poses a challenge to further improving network performance. To address these issues, we propose a novel point-to-point Dynamic Attention Guider(DAG) that dynamically generates multi-scale large receptive field attention to guide CNN networks to focus on target regions. Building upon DAG, we introduce a new hybrid network called the Dynamic Attention Guider Network (DAGN), which effectively combines Dynamic Attention Guider Block (DAGB) modules with Transformers to alleviate the computational cost of self-attention in processing high-resolution input images. Extensive experiments demonstrate that the proposed network outperforms existing state-of-the-art models across various downstream tasks. Specifically, the network achieves a Top-1 classification accuracy of 88.3% on ImageNet1k. For object detection and instance segmentation on COCO, it respectively surpasses the best FocalNet-T model by 1.6 <span>\\(AP^b\\)</span> and 1.5 <span>\\(AP^m\\)</span>, while achieving a top performance of 48.2% in semantic segmentation on ADE20K.</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"155 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01328-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Hybrid networks, benefiting from both CNNs and Transformers architectures, exhibit stronger feature extraction capabilities compared to standalone CNNs or Transformers. However, in hybrid networks, the lack of attention in CNNs or insufficient refinement in attention mechanisms hinder the highlighting of target regions. Additionally, the computational cost of self-attention in Transformers poses a challenge to further improving network performance. To address these issues, we propose a novel point-to-point Dynamic Attention Guider(DAG) that dynamically generates multi-scale large receptive field attention to guide CNN networks to focus on target regions. Building upon DAG, we introduce a new hybrid network called the Dynamic Attention Guider Network (DAGN), which effectively combines Dynamic Attention Guider Block (DAGB) modules with Transformers to alleviate the computational cost of self-attention in processing high-resolution input images. Extensive experiments demonstrate that the proposed network outperforms existing state-of-the-art models across various downstream tasks. Specifically, the network achieves a Top-1 classification accuracy of 88.3% on ImageNet1k. For object detection and instance segmentation on COCO, it respectively surpasses the best FocalNet-T model by 1.6 \(AP^b\) and 1.5 \(AP^m\), while achieving a top performance of 48.2% in semantic segmentation on ADE20K.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态注意力引导网络
与独立的 CNN 或 Transformers 相比,同时受益于 CNN 和 Transformers 架构的混合网络具有更强的特征提取能力。然而,在混合网络中,CNN 缺乏注意力或注意力机制不够精细,都会阻碍目标区域的突出显示。此外,Transformers 中自我关注的计算成本也对进一步提高网络性能构成了挑战。为了解决这些问题,我们提出了一种新颖的点对点动态注意力引导器(DAG),它能动态生成多尺度大感受野注意力,引导 CNN 网络聚焦目标区域。在 DAG 的基础上,我们引入了一种新的混合网络,称为动态注意力引导网络(DAGN),它有效地将动态注意力引导块(DAGB)模块与变换器结合在一起,以减轻处理高分辨率输入图像时自我注意力的计算成本。广泛的实验证明,所提出的网络在各种下游任务中的表现优于现有的一流模型。具体来说,该网络在 ImageNet1k 上达到了 88.3% 的 Top-1 分类准确率。在COCO上的物体检测和实例分割方面,它分别比最佳FocalNet-T模型高出1.6(AP^b\)和1.5(AP^m\),而在ADE20K上的语义分割方面则达到了48.2%的最高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
期刊最新文献
Mapping and just-in-time traffic congestion mitigation for emergency vehicles in smart cities Fog intelligence for energy efficient management in smart street lamps Contextual authentication of users and devices using machine learning Multi-objective service composition optimization problem in IoT for agriculture 4.0 Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1