Solvmate – a hybrid physical/ML approach to solvent recommendation leveraging a rank-based problem framework†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2024-07-30 DOI:10.1039/D4DD00138A
Jan Wollschläger and Floriane Montanari
{"title":"Solvmate – a hybrid physical/ML approach to solvent recommendation leveraging a rank-based problem framework†","authors":"Jan Wollschläger and Floriane Montanari","doi":"10.1039/D4DD00138A","DOIUrl":null,"url":null,"abstract":"<p >The solubility in a given organic solvent is a key parameter in the synthesis, analysis and chemical processing of an active pharmaceutical ingredient. In this work, we introduce a new tool for organic solvent recommendation that ranks possible solvent choices requiring only the SMILES representation of the solvents and solute involved. We report on three additional innovations: first, a differential/relative approach to solubility prediction is employed, in which solubility is modeled using pairs of measurements with the same solute but different solvents. We show that a relative framing of solubility as ranking solvents improves over a corresponding absolute solubility model across a diverse set of selected features. Second, a novel semiempirical featurization based on extended tight-binding (xtb) is applied to both the solvent and the solute, thereby providing physically meaningful representations of the problem at hand. Third, we provide an open-source implementation of this practical and convenient tool for organic solvent recommendation. Taken together, this work could be of benefit to those working in diverse areas, such as chemical engineering, material science, or synthesis planning.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":null,"pages":null},"PeriodicalIF":6.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/dd/d4dd00138a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/dd/d4dd00138a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The solubility in a given organic solvent is a key parameter in the synthesis, analysis and chemical processing of an active pharmaceutical ingredient. In this work, we introduce a new tool for organic solvent recommendation that ranks possible solvent choices requiring only the SMILES representation of the solvents and solute involved. We report on three additional innovations: first, a differential/relative approach to solubility prediction is employed, in which solubility is modeled using pairs of measurements with the same solute but different solvents. We show that a relative framing of solubility as ranking solvents improves over a corresponding absolute solubility model across a diverse set of selected features. Second, a novel semiempirical featurization based on extended tight-binding (xtb) is applied to both the solvent and the solute, thereby providing physically meaningful representations of the problem at hand. Third, we provide an open-source implementation of this practical and convenient tool for organic solvent recommendation. Taken together, this work could be of benefit to those working in diverse areas, such as chemical engineering, material science, or synthesis planning.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Solvmate - 利用基于等级的问题框架进行溶剂推荐的物理/ML 混合方法
在特定有机溶剂中的溶解度是活性药物成分合成、分析和化学处理的关键参数。在这项工作中,我们介绍了一种用于有机溶剂推荐的新工具,它只需使用溶剂和溶质的 SMILES 表示法就能对可能的溶剂选择进行排序。我们还报告了另外三项创新:首先,我们采用了溶解度预测的差分/相对方法,即使用相同溶质但不同溶剂的成对测量结果来建立溶解度模型。我们的研究表明,溶解度的相对框架是对溶剂进行排序,在一系列不同的选定特征中,其效果优于相应的绝对溶解度模型。其次,一种基于扩展紧密结合(xtb)的新型半经验特征化方法同时适用于溶剂和溶质,从而为当前问题提供了有物理意义的表征。第三,我们为有机溶剂推荐提供了这一实用便捷工具的开源实现。总之,这项工作将使化学工程、材料科学或合成规划等不同领域的工作人员受益匪浅。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
Back cover Sorting polyolefins with near-infrared spectroscopy: identification of optimal data analysis pipelines and machine learning classifiers†‡ High accuracy uncertainty-aware interatomic force modeling with equivariant Bayesian neural networks† Correction: A smile is all you need: predicting limiting activity coefficients from SMILES with natural language processing Artificial intelligence-enabled optimization of battery-grade lithium carbonate production†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1