Predicting hydrogen atom transfer energy barriers using Gaussian process regression†

IF 6.2 Q1 CHEMISTRY, MULTIDISCIPLINARY Digital discovery Pub Date : 2025-01-10 DOI:10.1039/D4DD00174E
Evgeni Ulanov, Ghulam A. Qadir, Kai Riedmiller, Pascal Friederich and Frauke Gräter
{"title":"Predicting hydrogen atom transfer energy barriers using Gaussian process regression†","authors":"Evgeni Ulanov, Ghulam A. Qadir, Kai Riedmiller, Pascal Friederich and Frauke Gräter","doi":"10.1039/D4DD00174E","DOIUrl":null,"url":null,"abstract":"<p >Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.23 kcal mol<small><sup>−1</sup></small> for the range of barriers in the data set using SOAP descriptors and similar values using the marginalized graph kernel. Thus, the two GPR models can robustly estimate reaction barriers within the large chemical and conformational space of proteins. Their predictive power is comparable to a graph neural network-based model, and GPR even outcompetes the latter in the low data regime. We propose GPR as a valuable tool for an approximate but data-efficient model of chemical reactivity in a complex and highly variable environment.</p>","PeriodicalId":72816,"journal":{"name":"Digital discovery","volume":" 2","pages":" 513-522"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747964/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital discovery","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/dd/d4dd00174e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting reaction barriers for arbitrary configurations based on only a limited set of density functional theory (DFT) calculations would render the design of catalysts or the simulation of reactions within complex materials highly efficient. We here propose Gaussian process regression (GPR) as a method of choice if DFT calculations are limited to hundreds or thousands of barrier calculations. For the case of hydrogen atom transfer in proteins, an important reaction in chemistry and biology, we obtain a mean absolute error of 3.23 kcal mol−1 for the range of barriers in the data set using SOAP descriptors and similar values using the marginalized graph kernel. Thus, the two GPR models can robustly estimate reaction barriers within the large chemical and conformational space of proteins. Their predictive power is comparable to a graph neural network-based model, and GPR even outcompetes the latter in the low data regime. We propose GPR as a valuable tool for an approximate but data-efficient model of chemical reactivity in a complex and highly variable environment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用高斯过程回归预测氢原子转移能垒。
仅基于有限的密度泛函理论(DFT)计算集来预测任意构型的反应障碍,将使催化剂的设计或复杂材料内反应的模拟变得高效。我们在这里提出高斯过程回归(GPR)作为选择的方法,如果DFT计算仅限于数百或数千个势垒计算。对于蛋白质中的氢原子转移,这是化学和生物学中的一个重要反应,我们使用SOAP描述符获得数据集中屏障范围的平均绝对误差为3.23 kcal mol-1,使用边缘图核获得类似的值。因此,这两种GPR模型可以在蛋白质的大化学和构象空间内可靠地估计反应屏障。它们的预测能力与基于图形神经网络的模型相当,在低数据状态下,GPR甚至胜过后者。我们认为探地雷达是一种有价值的工具,可以在复杂和高度可变的环境中建立化学反应性的近似但数据有效的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A simple compound prioritization method for drug discovery considering multi-target binding. Data augmentation in a triple transformer loop retrosynthesis model. Assessing the performance of quantum-mechanical descriptors in physicochemical and biological property prediction. Correction: Advancing mutagenicity predictions in drug discovery with an explainable few-shot deep learning framework One step retrosynthesis of drugs from commercially available chemical building blocks and conceivable coupling reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1