Phosphorus-, potassium-, and silicon-solubilizing bacteria from forest soils can mobilize soil minerals to promote the growth of rice (Oryza sativa L.)
Lei Zhang, Che Tan, Wenjuan Li, Li Lin, Tianlan Liao, Xiaoping Fan, Hongyun Peng, Qianli An, Yongchao Liang
{"title":"Phosphorus-, potassium-, and silicon-solubilizing bacteria from forest soils can mobilize soil minerals to promote the growth of rice (Oryza sativa L.)","authors":"Lei Zhang, Che Tan, Wenjuan Li, Li Lin, Tianlan Liao, Xiaoping Fan, Hongyun Peng, Qianli An, Yongchao Liang","doi":"10.1186/s40538-024-00622-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Forest soils are usually highly weathered and abundant in mineral-weathering bacteria, which have not been used to mobilize soil minerals for crop production. Here, we used an acidic forest soil with low available phosphorus (P), potassium (K), and silicon (Si) to isolate bacteria capable of co-solubilizing P, K, and Si (PKSi-solubilizing) and the model rice plant to test their potential to mobilize soil P, K, and Si for crop nutrition.</p><h3>Results</h3><p>Six PKSi-solubilizing strains representative of common mineral-weathering proteobacteria taxa (genera <i>Burkholderia</i>, <i>Paraburkholderia</i>, <i>Collimonas</i>, <i>Pseudomonas</i>, and <i>Agrobacterium</i>) were screened out. They showed diverse P-, K-, or Si-solubilizing activities and produced diverse organic acids. Their mineral-solubilizing activities were positively correlated with the levels of medium pH reduction and gluconic acid production. They promoted the growth of rice seedlings grown in the forest soil by increasing soil available P and Si, plant P, K, and Si cumulative contents and dry weight, and the corresponding root-to-shoot ratios. The growth of rice seedlings alone and with the inoculated PKSi-solubilizing stains in the acidic forest soil did not reduce the soil pH.</p><h3>Conclusions</h3><p>The forest soil with low available P, K, and Si is a valuable resource for high-performance PKSi-solubilizing bacteria improving soil fertility and crop nutrition. The PKSi-solubilizing bacteria screened out can promote rice seedling growth by mobilizing P, K, and Si from soil to plant in the acidic soil with low available P, K, and Si. They show potentials to mitigate soil P, K, and Si deficiency and promote crop growth, and to recover soluble P, K, and Si from chemical fertilizers and improve the use efficiency of chemical fertilizers, thus reducing the input of chemical fertilizers. They may retard soil acidification by Si-solubilization and improve soil quality.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00622-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00622-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Forest soils are usually highly weathered and abundant in mineral-weathering bacteria, which have not been used to mobilize soil minerals for crop production. Here, we used an acidic forest soil with low available phosphorus (P), potassium (K), and silicon (Si) to isolate bacteria capable of co-solubilizing P, K, and Si (PKSi-solubilizing) and the model rice plant to test their potential to mobilize soil P, K, and Si for crop nutrition.
Results
Six PKSi-solubilizing strains representative of common mineral-weathering proteobacteria taxa (genera Burkholderia, Paraburkholderia, Collimonas, Pseudomonas, and Agrobacterium) were screened out. They showed diverse P-, K-, or Si-solubilizing activities and produced diverse organic acids. Their mineral-solubilizing activities were positively correlated with the levels of medium pH reduction and gluconic acid production. They promoted the growth of rice seedlings grown in the forest soil by increasing soil available P and Si, plant P, K, and Si cumulative contents and dry weight, and the corresponding root-to-shoot ratios. The growth of rice seedlings alone and with the inoculated PKSi-solubilizing stains in the acidic forest soil did not reduce the soil pH.
Conclusions
The forest soil with low available P, K, and Si is a valuable resource for high-performance PKSi-solubilizing bacteria improving soil fertility and crop nutrition. The PKSi-solubilizing bacteria screened out can promote rice seedling growth by mobilizing P, K, and Si from soil to plant in the acidic soil with low available P, K, and Si. They show potentials to mitigate soil P, K, and Si deficiency and promote crop growth, and to recover soluble P, K, and Si from chemical fertilizers and improve the use efficiency of chemical fertilizers, thus reducing the input of chemical fertilizers. They may retard soil acidification by Si-solubilization and improve soil quality.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.