Efficient prediction of optical properties in hexagonal PCF using machine learning models

IF 3.1 3区 物理与天体物理 Q2 Engineering Optik Pub Date : 2024-06-27 DOI:10.1016/j.ijleo.2024.171929
{"title":"Efficient prediction of optical properties in hexagonal PCF using machine learning models","authors":"","doi":"10.1016/j.ijleo.2024.171929","DOIUrl":null,"url":null,"abstract":"<div><p>This research explores the use of machine learning (ML) models to forecast optical characteristics in photonic crystal fibers (PCF). Specifically, we focus on a solid core index-guided PCF with a hexagonal cladding arrangement. The primary challenges to PCF propagation analysis and predictions are accuracy, computational error, and time constraints. To address these difficulties, we have specially used ML ensemble models including Decision Tree Regressor (DTR), Random Forest Regressor (RFR), Gradient Boosting Regressor (GBR), eXtreme Gradient Boosting Regression (XGBR), and Bagging Regressor (BR). Model performance is assessed using metrics like Mean Squared Error (MSE) and R-squared (R2) through 10-fold cross-validation. Our key findings show that the GBR model outperforms other models and shows extremely low MSE and outstanding R2 values in predicting effective refractive index (Neff), effective mode area (Aeff), confinement loss, and dispersion. In addition, the study compares the performance of ML models with that of previous works using Artificial Neural Network (ANN), demonstrating improved efficiency in predicting optical characteristics for hexagonal PCFs.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624003280","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the use of machine learning (ML) models to forecast optical characteristics in photonic crystal fibers (PCF). Specifically, we focus on a solid core index-guided PCF with a hexagonal cladding arrangement. The primary challenges to PCF propagation analysis and predictions are accuracy, computational error, and time constraints. To address these difficulties, we have specially used ML ensemble models including Decision Tree Regressor (DTR), Random Forest Regressor (RFR), Gradient Boosting Regressor (GBR), eXtreme Gradient Boosting Regression (XGBR), and Bagging Regressor (BR). Model performance is assessed using metrics like Mean Squared Error (MSE) and R-squared (R2) through 10-fold cross-validation. Our key findings show that the GBR model outperforms other models and shows extremely low MSE and outstanding R2 values in predicting effective refractive index (Neff), effective mode area (Aeff), confinement loss, and dispersion. In addition, the study compares the performance of ML models with that of previous works using Artificial Neural Network (ANN), demonstrating improved efficiency in predicting optical characteristics for hexagonal PCFs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习模型高效预测六方 PCF 的光学特性
本研究探讨了如何利用机器学习(ML)模型预测光子晶体光纤(PCF)的光学特性。具体来说,我们将重点放在具有六边形包层排列的实芯索引引导 PCF 上。PCF 传播分析和预测面临的主要挑战是准确性、计算误差和时间限制。为了解决这些难题,我们特别采用了多重多重模型(ML)集合模型,包括决策树回归模型(DTR)、随机森林回归模型(RFR)、梯度提升回归模型(GBR)、极端梯度提升回归模型(XGBR)和袋式回归模型(BR)。通过 10 倍交叉验证,使用平均平方误差 (MSE) 和 R 平方 (R2) 等指标对模型性能进行评估。我们的主要研究结果表明,GBR 模型优于其他模型,在预测有效折射率(Neff)、有效模式面积(Aeff)、约束损耗和色散方面显示出极低的 MSE 和出色的 R2 值。此外,该研究还将 ML 模型的性能与之前使用人工神经网络 (ANN) 的研究成果进行了比较,结果表明,ML 模型在预测六边形 PCF 光学特性方面的效率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Optik
Optik 物理-光学
CiteScore
6.90
自引率
12.90%
发文量
1471
审稿时长
46 days
期刊介绍: Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields: Optics: -Optics design, geometrical and beam optics, wave optics- Optical and micro-optical components, diffractive optics, devices and systems- Photoelectric and optoelectronic devices- Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials- Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis- Optical testing and measuring techniques- Optical communication and computing- Physiological optics- As well as other related topics.
期刊最新文献
Soliton dynamics in (2+1) dimensional Heisenberg spin chain with Dzyaloshinskii–Moriya interaction in nanowire systems A comprehensive study of non-Lorentzian resonant lineshapes in nested ring resonators for quantum and photonic applications Simulation of high efficiency hybrid FTO/TiO2/CH3NH3SnI3/RGO based solar cell using SCAPS-1D Enhanced biosensing with rhombic ring resonator in 2D photonic crystals for proteinuria detection Investigating structural, optoelectronic, and mechanical properties of novel Tungsten-based oxides double-perovskites compounds Sr2XWO6 (X= Mn, Fe): A DFT approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1