Genome wide screening to discover novel toxin-antitoxin modules in Mycobacterium indicus pranii; perspective on gene acquisition during mycobacterial evolution.
{"title":"Genome wide screening to discover novel toxin-antitoxin modules in Mycobacterium indicus pranii; perspective on gene acquisition during mycobacterial evolution.","authors":"Aayush Bahl, Roopshali Rakshit, Saurabh Pandey, Deeksha Tripathi","doi":"10.1002/bab.2651","DOIUrl":null,"url":null,"abstract":"<p><p>Mycobacterium indicus pranii (MIP), a benign saprophyte with potent immunomodulatory attributes, holds a pivotal position in mycobacterial evolution, potentially serving as the precursor to the pathogenic Mycobacterium avium complex (MAC). Despite its established immunotherapeutic efficacy against leprosy and notable outcomes in gram-negative sepsis and COVID-19 cases, the genomic and biochemical features of MIP remain largely elusive. This study explores the uncharted territory of toxin-antitoxin (TA) systems within MIP, hypothesizing their role in mycobacterial pathogenicity regulation. Genome-wide screening, employing diverse databases, unveils putative TA modules in MIP, setting the stage for a comparative analysis with known modules in Mycobacterium tuberculosis, Mycobacterium smegmatis, Escherichia coli, and Vibrio cholerae. The study further delves into the TA network of MAC and Mycobacterium intracellulare, unraveling interactive properties and family characteristics of identified TA modules in MIP. This comprehensive exploration seeks to illuminate the contribution of TA modules in regulating virulence, habitat diversification, and the evolutionary pathogenicity of mycobacteria. The insights garnered from this investigation not only enhance our understanding of MIP's potential as a vaccine candidate but also hold promise in optimizing tuberculosis drug regimens for expedited recovery.</p>","PeriodicalId":9274,"journal":{"name":"Biotechnology and applied biochemistry","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and applied biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bab.2651","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mycobacterium indicus pranii (MIP), a benign saprophyte with potent immunomodulatory attributes, holds a pivotal position in mycobacterial evolution, potentially serving as the precursor to the pathogenic Mycobacterium avium complex (MAC). Despite its established immunotherapeutic efficacy against leprosy and notable outcomes in gram-negative sepsis and COVID-19 cases, the genomic and biochemical features of MIP remain largely elusive. This study explores the uncharted territory of toxin-antitoxin (TA) systems within MIP, hypothesizing their role in mycobacterial pathogenicity regulation. Genome-wide screening, employing diverse databases, unveils putative TA modules in MIP, setting the stage for a comparative analysis with known modules in Mycobacterium tuberculosis, Mycobacterium smegmatis, Escherichia coli, and Vibrio cholerae. The study further delves into the TA network of MAC and Mycobacterium intracellulare, unraveling interactive properties and family characteristics of identified TA modules in MIP. This comprehensive exploration seeks to illuminate the contribution of TA modules in regulating virulence, habitat diversification, and the evolutionary pathogenicity of mycobacteria. The insights garnered from this investigation not only enhance our understanding of MIP's potential as a vaccine candidate but also hold promise in optimizing tuberculosis drug regimens for expedited recovery.
期刊介绍:
Published since 1979, Biotechnology and Applied Biochemistry is dedicated to the rapid publication of high quality, significant research at the interface between life sciences and their technological exploitation.
The Editors will consider papers for publication based on their novelty and impact as well as their contribution to the advancement of medical biotechnology and industrial biotechnology, covering cutting-edge research in synthetic biology, systems biology, metabolic engineering, bioengineering, biomaterials, biosensing, and nano-biotechnology.