{"title":"Capillary effect-based selective sealing strategy for increasing piezoelectric MEMS speaker performance.","authors":"Yan Wang, Tunan Lv, Junning Zhang, Hongbin Yu","doi":"10.1038/s41378-024-00753-x","DOIUrl":null,"url":null,"abstract":"<p><p>To address the serious acoustic performance deterioration induced by air leakage in the low-frequency range and the asynchronous vibration in electroacoustic transduction structures near the resonant frequency, a novel sealing strategy is proposed that targets one of the most widely reported piezoelectric MEMS speaker designs. This design consists of multiple cantilever beams, in which the air gaps between cantilevers are automatically and selectively filled with liquid polydimethylsiloxane (PDMS) via the capillary effect, followed by curing. In the proof-of-concept demonstration, the sound pressure level (SPL) within the frequency range lower than 100 Hz markedly increased after sealing in an experiment using an IEC ear simulator. Specifically, the SPL is increased by 4.9 dB at 20 Hz for a 40 V<sub>pp</sub> driving voltage. Moreover, the deteriorated SPL response near the resonant frequencies of the cantilever beams (18 kHz-19 kHz) caused by their asynchronous vibration induced by the fabrication process nonuniformity also significantly improved, which successfully increased the SPL to approximately 17.5 dB. Moreover, sealed devices feature nearly the same SPL response as the initial counterpart in the frequency band from 100 Hz to 16 kHz and a total harmonic distortion (THD) of 0.728% at 1 kHz for a 40 V<sub>pp</sub> driving voltage. Compared with existing sealing methods, the current approach offers easy operation, low damage risk, excellent repeatability/reliability and excellent robustness advantages and provides a promising technical solution for MEMS acoustic devices.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 ","pages":"108"},"PeriodicalIF":7.3000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303757/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00753-x","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
To address the serious acoustic performance deterioration induced by air leakage in the low-frequency range and the asynchronous vibration in electroacoustic transduction structures near the resonant frequency, a novel sealing strategy is proposed that targets one of the most widely reported piezoelectric MEMS speaker designs. This design consists of multiple cantilever beams, in which the air gaps between cantilevers are automatically and selectively filled with liquid polydimethylsiloxane (PDMS) via the capillary effect, followed by curing. In the proof-of-concept demonstration, the sound pressure level (SPL) within the frequency range lower than 100 Hz markedly increased after sealing in an experiment using an IEC ear simulator. Specifically, the SPL is increased by 4.9 dB at 20 Hz for a 40 Vpp driving voltage. Moreover, the deteriorated SPL response near the resonant frequencies of the cantilever beams (18 kHz-19 kHz) caused by their asynchronous vibration induced by the fabrication process nonuniformity also significantly improved, which successfully increased the SPL to approximately 17.5 dB. Moreover, sealed devices feature nearly the same SPL response as the initial counterpart in the frequency band from 100 Hz to 16 kHz and a total harmonic distortion (THD) of 0.728% at 1 kHz for a 40 Vpp driving voltage. Compared with existing sealing methods, the current approach offers easy operation, low damage risk, excellent repeatability/reliability and excellent robustness advantages and provides a promising technical solution for MEMS acoustic devices.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.