Xinhou Zhang, Wen Xiao, Changchun Song, Jinbo Zhang, Xueyan Liu, Rong Mao
{"title":"Nutrient responses of vascular plants to N<sub>2</sub>-fixing tree Alnus hirsuta encroachment in a boreal peatland.","authors":"Xinhou Zhang, Wen Xiao, Changchun Song, Jinbo Zhang, Xueyan Liu, Rong Mao","doi":"10.1007/s00442-024-05605-z","DOIUrl":null,"url":null,"abstract":"<p><p>The N<sub>2</sub>-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ<sup>15</sup>N occurred for all organs of shrubs, with interspecific differences in change of leaf δ<sup>15</sup>N. According to the mass balance equation involving leaf δ<sup>15</sup>N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N<sub>2</sub>-fixing system regulates plant N responses in boreal peatlands.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":" ","pages":"1-10"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05605-z","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.
期刊介绍:
Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas:
Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology,
Behavioral ecology and Physiological Ecology.
In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.