{"title":"Enhanced polarization fatigue behavior in lead-free ferroelectric (K, Na)NbO3 thin films by Mn doping","authors":"Nguyen Dang Phu, Xuan Luc Le, Nguyen Xuan Duong","doi":"10.1007/s10854-024-13340-7","DOIUrl":null,"url":null,"abstract":"<div><p>Potassium sodium niobate (KNN) has attracted much interest as a promising lead-free ferroelectric candidate with its excellent physical properties for potential applications to novel nano-devices such as non-volatile ferroelectric memory. However, the use of KNN films in actual devices has been limited due to concerns in operational reliability (i.e., a polarization fatigue property). In this work, we demonstrate the enhancement of a polarization fatigue behavior in KNN thin films by doping of Mn ions. Ferroelectric fatigue is significantly suppressed in 0.4 mol% Mn-doped KNN films compared with pure KNN films. The amounts of mobile charged defects (e.g., oxygen vacancies and hole carriers produced with cation vacancies) are reduced in the presence of multivalent Mn dopants resulting in a decrease of leakage current density. The reduction of charged defect density can weaken the domain wall pinning effect enabling the polarization fatigue to be suppressed in KNN films. Our work is of practical interest for realizing lead-free ferroelectric memory devices with high performance.</p></div>","PeriodicalId":646,"journal":{"name":"Journal of Materials Science: Materials in Electronics","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10854-024-13340-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Potassium sodium niobate (KNN) has attracted much interest as a promising lead-free ferroelectric candidate with its excellent physical properties for potential applications to novel nano-devices such as non-volatile ferroelectric memory. However, the use of KNN films in actual devices has been limited due to concerns in operational reliability (i.e., a polarization fatigue property). In this work, we demonstrate the enhancement of a polarization fatigue behavior in KNN thin films by doping of Mn ions. Ferroelectric fatigue is significantly suppressed in 0.4 mol% Mn-doped KNN films compared with pure KNN films. The amounts of mobile charged defects (e.g., oxygen vacancies and hole carriers produced with cation vacancies) are reduced in the presence of multivalent Mn dopants resulting in a decrease of leakage current density. The reduction of charged defect density can weaken the domain wall pinning effect enabling the polarization fatigue to be suppressed in KNN films. Our work is of practical interest for realizing lead-free ferroelectric memory devices with high performance.
期刊介绍:
The Journal of Materials Science: Materials in Electronics is an established refereed companion to the Journal of Materials Science. It publishes papers on materials and their applications in modern electronics, covering the ground between fundamental science, such as semiconductor physics, and work concerned specifically with applications. It explores the growth and preparation of new materials, as well as their processing, fabrication, bonding and encapsulation, together with the reliability, failure analysis, quality assurance and characterization related to the whole range of applications in electronics. The Journal presents papers in newly developing fields such as low dimensional structures and devices, optoelectronics including III-V compounds, glasses and linear/non-linear crystal materials and lasers, high Tc superconductors, conducting polymers, thick film materials and new contact technologies, as well as the established electronics device and circuit materials.