Hongbao Zhang, Liuti Cai, Kai Yuan, Zhongwei Liu, Maoyang Ran, Siang Chen, Wu Cai, Cheng Rao, Lin Cai, Dong Zhou
{"title":"The synergistic effect of biosynthesized CuONPs and phage (ϕPB2) as a novel approach for controlling Ralstonia solanacearum","authors":"Hongbao Zhang, Liuti Cai, Kai Yuan, Zhongwei Liu, Maoyang Ran, Siang Chen, Wu Cai, Cheng Rao, Lin Cai, Dong Zhou","doi":"10.1186/s40538-024-00630-9","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>As a vital soil-borne pathogenic bacterium, <i>Ralstonia solanacearum</i> can cause wilt disease in multiple <i>Solanaceae</i> plants. Several phages, such as ϕPB2, could infect <i>R</i>. <i>solanacearum</i> acting as a potential biological control agent in soil. In addition, some nanoparticles, especially copper preparation, also showed high toxicity on <i>R. solanacearum</i> with low toxicity on plant. However, whether they can be administered in combination and how effective they are in inhibiting the plant disease caused by <i>R</i>. <i>solanacearum</i> is known very little.</p><h3>Results</h3><p>In this work, the characterization of CuONPs using scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction ascertained the presence of CuONPs which were nanometer particle of 83 nm. Then it was found that combined application of CuONPs with phage (ϕPB2) was superior to that of ϕPB2 or CuONPs alone in controlling tobacco bacterial wilt, with the CuONPs (250 mg/mL) and phage (10<sup>6</sup> PFU/mL) ratio being the best, at 79.1%. The combination of CuONPs and ϕPB2 also showed no obvious toxicity on tobacco growth than control like single application of CuONPs or ϕPB2. Furthermore, the transcriptome changes of <i>R</i>. <i>solanacearum</i> analysis indicated that the combination application and single allocation of CuONPs could inhibit “biofilm formation”, molecular function, biological processes, cellular components, metabolic process, and so on. In addition, the combination application showed higher inhibition of motility and biofilm, and better enhancement of cell membrane permeability, protein leakage, MDA concentration, and enzyme activity of their respiratory chain dehydrogenase than single application of CuONPs or phage (ϕPB2). Transcriptomes analysis also supported that the addition of ϕPB2 enhanced the toxicity of CuONPs by influencing the ABC transporters and quorum sensing, metabolic processes, and cellular biosynthetic processes of <i>R. solanacearum</i>.</p><h3>Conclusion</h3><p>In total, our work not only proposed a novel way to increase the bactericidal effect of nanomaterials by adding phage, but also discovered the influence, synergistic effects, and mechanisms, which is useful to design novel way to combat phytopathogenic bacteria in the complicated environment.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00630-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00630-9","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
As a vital soil-borne pathogenic bacterium, Ralstonia solanacearum can cause wilt disease in multiple Solanaceae plants. Several phages, such as ϕPB2, could infect R. solanacearum acting as a potential biological control agent in soil. In addition, some nanoparticles, especially copper preparation, also showed high toxicity on R. solanacearum with low toxicity on plant. However, whether they can be administered in combination and how effective they are in inhibiting the plant disease caused by R. solanacearum is known very little.
Results
In this work, the characterization of CuONPs using scanning electron microscope, transmission electron microscope, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction ascertained the presence of CuONPs which were nanometer particle of 83 nm. Then it was found that combined application of CuONPs with phage (ϕPB2) was superior to that of ϕPB2 or CuONPs alone in controlling tobacco bacterial wilt, with the CuONPs (250 mg/mL) and phage (106 PFU/mL) ratio being the best, at 79.1%. The combination of CuONPs and ϕPB2 also showed no obvious toxicity on tobacco growth than control like single application of CuONPs or ϕPB2. Furthermore, the transcriptome changes of R. solanacearum analysis indicated that the combination application and single allocation of CuONPs could inhibit “biofilm formation”, molecular function, biological processes, cellular components, metabolic process, and so on. In addition, the combination application showed higher inhibition of motility and biofilm, and better enhancement of cell membrane permeability, protein leakage, MDA concentration, and enzyme activity of their respiratory chain dehydrogenase than single application of CuONPs or phage (ϕPB2). Transcriptomes analysis also supported that the addition of ϕPB2 enhanced the toxicity of CuONPs by influencing the ABC transporters and quorum sensing, metabolic processes, and cellular biosynthetic processes of R. solanacearum.
Conclusion
In total, our work not only proposed a novel way to increase the bactericidal effect of nanomaterials by adding phage, but also discovered the influence, synergistic effects, and mechanisms, which is useful to design novel way to combat phytopathogenic bacteria in the complicated environment.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.