Total lightning signatures in a tornadic thunderstorm over the Pearl River Delta of Southern China

IF 1.8 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Journal of Atmospheric and Solar-Terrestrial Physics Pub Date : 2024-08-08 DOI:10.1016/j.jastp.2024.106324
Muzi Li, Yadong Fan, Jianguo Wang, Li Cai, Jinxin Cao, Mi Zhou, Yijun Huang
{"title":"Total lightning signatures in a tornadic thunderstorm over the Pearl River Delta of Southern China","authors":"Muzi Li,&nbsp;Yadong Fan,&nbsp;Jianguo Wang,&nbsp;Li Cai,&nbsp;Jinxin Cao,&nbsp;Mi Zhou,&nbsp;Yijun Huang","doi":"10.1016/j.jastp.2024.106324","DOIUrl":null,"url":null,"abstract":"<div><p>Tornado rises rotating air columns extending from the bottom of cumulonimbus clouds to the ground, often accompanied by strong convection with thunderstorms, hail, and short-term heavy precipitation, which seriously threaten people's lives and property safety. Studying the characteristics of thunderstorm activity during a tornado is crucial for comprehending the atmospheric electrical mechanisms involved in its generation process and developing cooperative methods for tornado warning and forecasting. Based on the VLF/LF total lightning location system and radar echo data, this paper analyzes the spatial-temporal evolution, frequency, polarity, and height of total lightning during a strong tornado (EF3) in the Pearl River Delta region on June 3, 2014. The lightning activity lasted for about 3.5 h, with a total of 41,117 total lightning flashes, of which intra-cloud (IC) flashes accounted for 74.7%, cloud-to-ground (CG) flashes accounted for 21.6%, and narrow bipolar events (NBEs) accounted for 3.7%. Connected-Component Labeling (CCL) algorithm was used to divide the thunderstorm into four stages: initiation, development, maturation, and dissipation, and it was observed that the occurrence of tornadoes was closely related to total lightning activities. The observed characteristics of lightning activity in the tornado are summarized through comparison with other studies.</p></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"262 ","pages":"Article 106324"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624001524","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Tornado rises rotating air columns extending from the bottom of cumulonimbus clouds to the ground, often accompanied by strong convection with thunderstorms, hail, and short-term heavy precipitation, which seriously threaten people's lives and property safety. Studying the characteristics of thunderstorm activity during a tornado is crucial for comprehending the atmospheric electrical mechanisms involved in its generation process and developing cooperative methods for tornado warning and forecasting. Based on the VLF/LF total lightning location system and radar echo data, this paper analyzes the spatial-temporal evolution, frequency, polarity, and height of total lightning during a strong tornado (EF3) in the Pearl River Delta region on June 3, 2014. The lightning activity lasted for about 3.5 h, with a total of 41,117 total lightning flashes, of which intra-cloud (IC) flashes accounted for 74.7%, cloud-to-ground (CG) flashes accounted for 21.6%, and narrow bipolar events (NBEs) accounted for 3.7%. Connected-Component Labeling (CCL) algorithm was used to divide the thunderstorm into four stages: initiation, development, maturation, and dissipation, and it was observed that the occurrence of tornadoes was closely related to total lightning activities. The observed characteristics of lightning activity in the tornado are summarized through comparison with other studies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中国南方珠江三角洲上空龙卷风雷暴中的总闪电特征
龙卷风是从积雨云底部延伸到地面的旋转气柱,常伴有雷暴、冰雹和短时强降水等强对流天气,严重威胁人们的生命和财产安全。研究龙卷风发生时的雷暴活动特征,对于理解龙卷风生成过程中的大气电机制以及开发龙卷风预警和预报的合作方法至关重要。本文基于 VLF/LF 总闪电定位系统和雷达回波数据,分析了 2014 年 6 月 3 日珠江三角洲地区强龙卷风(EF3)期间总闪电的时空演变、频率、极性和高度。雷电活动持续了约3.5小时,闪电总数为41117次,其中云内闪电(IC)占74.7%,云对地(CG)闪电占21.6%,窄双极事件(NBE)占3.7%。利用连接成分标签(CCL)算法将雷暴分为四个阶段:开始、发展、成熟和消散,观察到龙卷风的发生与总闪电活动密切相关。通过与其他研究的比较,总结了龙卷风中闪电活动的观测特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Atmospheric and Solar-Terrestrial Physics
Journal of Atmospheric and Solar-Terrestrial Physics 地学-地球化学与地球物理
CiteScore
4.10
自引率
5.30%
发文量
95
审稿时长
6 months
期刊介绍: The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them. The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions. Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.
期刊最新文献
Mechanism of a stepped leader in a negative lightning Mean winds and tidal variability from troposphere to the thermosphere retrieved from combined ground based and space borne measurements Evaluation of meteorological drought indices using remote sensing Simulation and projection of photovoltaic energy potential over a tropical region using CMIP6 models Development of Land Use Regression (LUR) models and high-resolution spatial mapping of criteria air pollutants: Leveraging Delhi's continuous air monitoring network and remote sensing data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1