A. Kalyan Teja , M. Venkat Ratnam , S. Vijaya Bhaskara Rao
{"title":"Mean winds and tidal variability from troposphere to the thermosphere retrieved from combined ground based and space borne measurements","authors":"A. Kalyan Teja , M. Venkat Ratnam , S. Vijaya Bhaskara Rao","doi":"10.1016/j.jastp.2024.106389","DOIUrl":null,"url":null,"abstract":"<div><div>An attempt has been made to obtain mean winds covering the complete middle and upper atmosphere over a tropical region, Tirupati(13.5°N, 79.2°E) using a combined dataset of ERA5 reanalysis, SVU-meteor radar, and ICON/MIGHTI after comprehensive validation. Regardless of the season, thermospheric(200–300 km) and mesospheric(80–100 km) winds exhibit significant diurnal variability. Mean winds exhibit two distinct semi-annual oscillations at the stratopause and in the mesosphere. Tidal amplitudes are larger in meridional winds compared to that of zonal winds in the MLT region. This work has the potential in the field of numerical modeling of atmospheric circulation, especially to verify numerical simulations.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106389"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624002177","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
An attempt has been made to obtain mean winds covering the complete middle and upper atmosphere over a tropical region, Tirupati(13.5°N, 79.2°E) using a combined dataset of ERA5 reanalysis, SVU-meteor radar, and ICON/MIGHTI after comprehensive validation. Regardless of the season, thermospheric(200–300 km) and mesospheric(80–100 km) winds exhibit significant diurnal variability. Mean winds exhibit two distinct semi-annual oscillations at the stratopause and in the mesosphere. Tidal amplitudes are larger in meridional winds compared to that of zonal winds in the MLT region. This work has the potential in the field of numerical modeling of atmospheric circulation, especially to verify numerical simulations.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.