Low-Temperature Processed Ni/GeSn Optimal Contacts for Junctionless GeSn-on-Si FinFETs

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-08-09 DOI:10.1109/TED.2024.3430244
Sumit Choudhary;Daniel Schwarz;Hannes S. Funk;Satinder K. Sharma;Jörg Schulze
{"title":"Low-Temperature Processed Ni/GeSn Optimal Contacts for Junctionless GeSn-on-Si FinFETs","authors":"Sumit Choudhary;Daniel Schwarz;Hannes S. Funk;Satinder K. Sharma;Jörg Schulze","doi":"10.1109/TED.2024.3430244","DOIUrl":null,"url":null,"abstract":"For junctionless FETs (JLFETs), an optimal ohmic contact is needed to achieve maximum drive current. The scaling of the source/drain (S/D) contact area impacts the contact resistivity (\n<inline-formula> <tex-math>$\\rho _{c}$ </tex-math></inline-formula>\n) of FETs, which limits their\n<sc>on</small>\n current and switching speed. Minimizing the S/D series resistance along with ohmic contacts is the critical factor in JLFET design due to moderate doping levels at S/D. The Ni and Ge contacts optimized at a low temperature of \n<inline-formula> <tex-math>$350~^{\\circ }$ </tex-math></inline-formula>\nC by forming gas annealing (FGA) process and the computed contact resistance (\n<inline-formula> <tex-math>${R}_{c}$ </tex-math></inline-formula>\n), sheet resistance (\n<inline-formula> <tex-math>${R}_{\\text {sh}}$ </tex-math></inline-formula>\n), and contact resistivity (\n<inline-formula> <tex-math>$\\rho _{c}$ </tex-math></inline-formula>\n) for Ni/p-GeSn contacts are \n<inline-formula> <tex-math>$2.04\\times 10^{-{3}}~\\Omega \\cdot \\text {cm}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$63.96~\\Omega $ </tex-math></inline-formula>\n/□, and \n<inline-formula> <tex-math>$6.18\\times 10^{-{8}}~\\Omega \\cdot \\text {cm}^{{2}}$ </tex-math></inline-formula>\n, respectively. The impact of capping metal resistance (\n<inline-formula> <tex-math>${R}_{m}$ </tex-math></inline-formula>\n) is analytically examined for Ni/p-GeSn contacts using the modified circular transmission line model (cTLM). Furthermore, to study the metal cap resistance (\n<inline-formula> <tex-math>${R}_{m}$ </tex-math></inline-formula>\n) effect pragmatically, the optimized GeSn channel FinFET with width/length (W/L) 20/90 nm is analyzed by incorporating an extra metal cap at contacts and its electrical characteristics were compared with the control sample. The result demonstrate that the effect of metal resistance is very significant in low sheet resistance (\n<inline-formula> <tex-math>${R}_{\\text {sh}}$ </tex-math></inline-formula>\n) materials, where \n<inline-formula> <tex-math>${R}_{\\text {sh}}$ </tex-math></inline-formula>\n is close to \n<inline-formula> <tex-math>${R}_{m}$ </tex-math></inline-formula>\n.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10632111/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

For junctionless FETs (JLFETs), an optimal ohmic contact is needed to achieve maximum drive current. The scaling of the source/drain (S/D) contact area impacts the contact resistivity ( $\rho _{c}$ ) of FETs, which limits their on current and switching speed. Minimizing the S/D series resistance along with ohmic contacts is the critical factor in JLFET design due to moderate doping levels at S/D. The Ni and Ge contacts optimized at a low temperature of $350~^{\circ }$ C by forming gas annealing (FGA) process and the computed contact resistance ( ${R}_{c}$ ), sheet resistance ( ${R}_{\text {sh}}$ ), and contact resistivity ( $\rho _{c}$ ) for Ni/p-GeSn contacts are $2.04\times 10^{-{3}}~\Omega \cdot \text {cm}$ , $63.96~\Omega $ /□, and $6.18\times 10^{-{8}}~\Omega \cdot \text {cm}^{{2}}$ , respectively. The impact of capping metal resistance ( ${R}_{m}$ ) is analytically examined for Ni/p-GeSn contacts using the modified circular transmission line model (cTLM). Furthermore, to study the metal cap resistance ( ${R}_{m}$ ) effect pragmatically, the optimized GeSn channel FinFET with width/length (W/L) 20/90 nm is analyzed by incorporating an extra metal cap at contacts and its electrical characteristics were compared with the control sample. The result demonstrate that the effect of metal resistance is very significant in low sheet resistance ( ${R}_{\text {sh}}$ ) materials, where ${R}_{\text {sh}}$ is close to ${R}_{m}$ .
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于无结 GeSn$_{text{-on-}}$Si FinFET 的低温加工 Ni/GeSn 最佳触点
对于无结型场效应晶体管(JLFET)来说,要获得最大驱动电流,需要一个最佳的欧姆接触。源极/漏极 (S/D) 接触面积的缩放会影响 FET 的接触电阻率($\rho _{c}$),从而限制其导通电流和开关速度。由于 S/D 的掺杂水平适中,最大限度地减小 S/D 的串联电阻和欧姆触点是 JLFET 设计的关键因素。通过成型气体退火(FGA)工艺,在350~^{\circ }$ C的低温下对镍和锗触点进行了优化,计算得出的镍/钯-锗-硒触点的接触电阻({R}_{c}$)、薄片电阻({R}_{\text {sh}}$)和接触电阻率(\rho _{c}$)为2.0^{-{3}}~\Omega \cdot \text {cm}$ 、 $63.96~\Omega $ /□ 和 $6.18/times 10^{-{8}}~\Omega \cdot \text {cm}^{2}}$ 。利用改进的环形传输线模型(cTLM)分析了镍/钯-锗-硒触点的盖帽金属电阻({R}_{m}$)的影响。此外,为了务实地研究金属帽电阻({R}_{m}$ )的影响,通过在触点处加入额外的金属帽,分析了宽度/长度(W/L)为 20/90 nm 的优化 GeSn 沟道 FinFET,并将其电气特性与对照样品进行了比较。结果表明,在低薄片电阻(${R}_{text {sh}}$)材料中,金属电阻的影响非常显著,其中${R}_{text {sh}}$接近于${R}_{m}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
High-Temperature Retention Stability of Multibit Ferroelectric HfZrO$_{\text{2}}$ FinFET With SiGe/Si Superlattice Channel for Enhanced Speed and Memory Window A Physics-Based Analytic Model for p-GaN HEMTs Enhanced Packaging for Reliability Improvement of P1.2 Mini-LED Emissive Displays in High Temperature and Humidity Diamond-on-Si IGBT With Ultrahigh Breakdown Voltage and On-State Current Experimental Investigation of Drain Noise in High Electron Mobility Transistors: Thermal and Hot Electron Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1