Carbon monoxide (CO) and particulate matter (PM) emissions during the combustion of wood pellets in a small-scale combustion unit – Influence of aluminum-(silicate-)based fuel additivation

IF 7.2 2区 工程技术 Q1 CHEMISTRY, APPLIED Fuel Processing Technology Pub Date : 2024-07-31 DOI:10.1016/j.fuproc.2024.108111
Theresa Siegmund, Christian Gollmer, Niklas Horstmann, Martin Kaltschmitt
{"title":"Carbon monoxide (CO) and particulate matter (PM) emissions during the combustion of wood pellets in a small-scale combustion unit – Influence of aluminum-(silicate-)based fuel additivation","authors":"Theresa Siegmund,&nbsp;Christian Gollmer,&nbsp;Niklas Horstmann,&nbsp;Martin Kaltschmitt","doi":"10.1016/j.fuproc.2024.108111","DOIUrl":null,"url":null,"abstract":"<div><p>The additivation of solid biofuels has proven to be an effective method for reducing total particulate matter (TPM) and carbon monoxide (CO) emissions, as well as for reducing ash-related problems related to, e.g., fouling and slagging. During the combustion with additives, potassium (K) released from the solid biofuels is bound into temperature-stable compounds, thus preventing the formation of inorganic (i.e., K-based) TPM. Simultaneously by reducing K in the gas phase, the inhibition of gas-phase oxidation (e.g., CO oxidation) due to interference of K within the existing radical pool is hindered. Particularly kaolin, an aluminum-silicate-based additive has proven effective in reducing not only TPM but also CO emissions. The mitigation effects on CO emissions have previously been reported mostly in a subordinate role and explanations are given in the form of hypotheses. In this study, seven additives (i.e., kaolin, kaolinite, meta-kaolinite, aluminum hydroxide, muscovite, muscovite coated with titanium dioxide and kalsilite, each at 0.3 wt%<sub>a.r.</sub>) were investigated during wood pellet combustion in a small-scale furnace (7.8 kW). For both CO and TPM emissions, kaolin proved to be most effective (i.e., −52% CO, −49% TPM), followed by muscovite, kaolinite, TiO<sub>2</sub> coated muscovite, aluminum hydroxide, and meta-kaolinite.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"262 ","pages":"Article 108111"},"PeriodicalIF":7.2000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S037838202400081X/pdfft?md5=ae37554103594d3072f87d0e16e29198&pid=1-s2.0-S037838202400081X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037838202400081X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The additivation of solid biofuels has proven to be an effective method for reducing total particulate matter (TPM) and carbon monoxide (CO) emissions, as well as for reducing ash-related problems related to, e.g., fouling and slagging. During the combustion with additives, potassium (K) released from the solid biofuels is bound into temperature-stable compounds, thus preventing the formation of inorganic (i.e., K-based) TPM. Simultaneously by reducing K in the gas phase, the inhibition of gas-phase oxidation (e.g., CO oxidation) due to interference of K within the existing radical pool is hindered. Particularly kaolin, an aluminum-silicate-based additive has proven effective in reducing not only TPM but also CO emissions. The mitigation effects on CO emissions have previously been reported mostly in a subordinate role and explanations are given in the form of hypotheses. In this study, seven additives (i.e., kaolin, kaolinite, meta-kaolinite, aluminum hydroxide, muscovite, muscovite coated with titanium dioxide and kalsilite, each at 0.3 wt%a.r.) were investigated during wood pellet combustion in a small-scale furnace (7.8 kW). For both CO and TPM emissions, kaolin proved to be most effective (i.e., −52% CO, −49% TPM), followed by muscovite, kaolinite, TiO2 coated muscovite, aluminum hydroxide, and meta-kaolinite.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在小型燃烧装置中燃烧木质颗粒时的一氧化碳(CO)和颗粒物(PM)排放--基于铝(硅酸盐)的燃料添加剂的影响
事实证明,固体生物燃料添加剂是减少总颗粒物质(TPM)和一氧化碳(CO)排放,以及减少与灰有关的问题(如结垢和结渣)的有效方法。在使用添加剂进行燃烧的过程中,固体生物燃料中释放的钾(K)会被结合成温度稳定的化合物,从而防止形成无机(即钾基)TPM。同时,通过减少气相中的钾,还可抑制由于钾对现有自由基池的干扰而导致的气相氧化(如 CO 氧化)。特别是高岭土,一种基于铝硅酸盐的添加剂已被证明不仅能有效减少 TPM,还能有效减少 CO 排放。以前的报告中,对 CO 排放的缓解作用大多处于从属地位,并以假设的形式进行了解释。在本研究中,我们在小型熔炉(7.8 千瓦)中对木质颗粒燃烧过程中的七种添加剂(即高岭土、高岭石、偏高岭石、氢氧化铝、麝香石、涂有二氧化钛的麝香石和kalsilite,每种添加剂的含量均为 0.3 wt%)进行了调查。在 CO 和 TPM 排放方面,高岭土被证明是最有效的(即 CO -52%,TPM -49%),其次是麝香石、高岭石、TiO 涂层麝香石、氢氧化铝和元高岭石。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel Processing Technology
Fuel Processing Technology 工程技术-工程:化工
CiteScore
13.20
自引率
9.30%
发文量
398
审稿时长
26 days
期刊介绍: Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.
期刊最新文献
Sustainable production of biohydrogen: Feedstock, pretreatment methods, production processes, and environmental impact An experimental evaluation of thermophysical properties of colloidal suspension of carbon-rich fly ash microparticles and single-walled carbon nanotubes in Jet-A fuel and its impact on evaporation and burning rate Microwave-assisted biodiesel synthesis from waste cooking oil: Exploring the potential of carob pod-derived solid base catalyst Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over Co-Ce-Zr ternary metal solid solution A bifunctional catalyst for direct CO2 conversion to clean fuels: Mechanistic insights and a comprehensive kinetic model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1