{"title":"Temperature-Dependent Modulus and Ultrasonic Velocity of Concrete","authors":"Ding Wang, Jing Tang","doi":"10.1155/2024/9051219","DOIUrl":null,"url":null,"abstract":"<div>\n <p>The temperature dependence of the internal structure and elastic properties of concrete is revealed by subjecting concrete to different heating conditions. The variation trend of wave velocity in the concrete medium with temperature is analyzed through ultrasonic properties. The decrease in cement matrix modulus and the increase in crack density in concrete are the main factors leading to a decrease in wave velocity. The changes in the composition of the concrete matrix after dehydration are obtained using a thermal decomposition model. Based on the effective medium model, the calculation results of the effective modulus at different temperatures are presented, with a focus on analyzing the influences of the temperature-dependent changes in the matrix elastic properties and the randomly distributed cracks on the effective modulus. The experimental tests and the presentation of the model results indicate a relatively satisfactory agreement, thereby verifying the reliability of the models. The results of this study can explain the basic propagation mechanism of waves in concrete and have promising applications in the ultrasonic testing of thermal damage to cement-based materials.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":"2024 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/9051219","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/9051219","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The temperature dependence of the internal structure and elastic properties of concrete is revealed by subjecting concrete to different heating conditions. The variation trend of wave velocity in the concrete medium with temperature is analyzed through ultrasonic properties. The decrease in cement matrix modulus and the increase in crack density in concrete are the main factors leading to a decrease in wave velocity. The changes in the composition of the concrete matrix after dehydration are obtained using a thermal decomposition model. Based on the effective medium model, the calculation results of the effective modulus at different temperatures are presented, with a focus on analyzing the influences of the temperature-dependent changes in the matrix elastic properties and the randomly distributed cracks on the effective modulus. The experimental tests and the presentation of the model results indicate a relatively satisfactory agreement, thereby verifying the reliability of the models. The results of this study can explain the basic propagation mechanism of waves in concrete and have promising applications in the ultrasonic testing of thermal damage to cement-based materials.
期刊介绍:
The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications.
Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics.
Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.