{"title":"Structural, antioxidant activity, and stability studies of jellyfish collagen peptide–calcium chelates","authors":"Jiajia Gao, Chong Ning, Mingxia Wang, Mingming Wei, Yifei Ren, Weixuan Li","doi":"10.1016/j.fochx.2024.101706","DOIUrl":null,"url":null,"abstract":"The aim of this study was to prepare and characterize jellyfish collagen peptide (JCP)–calcium chelates (JCP-Ca) using peptides with different molecular weights. Further analysis revealed that the low-molecular-weight jellyfish collagen peptide (JCP1) had a higher chelation rate. Structural characterization showed that functional groups such as NH, CO, and -COO were involved in the formation of JCP-Ca, which shifted towards a more ordered and regular structure, and smaller-molecular-weight peptides were more likely to form a denser structure. In addition, JCPs chelated with calcium ions showed excellent antioxidant capacity. JCP-Ca showed good stability in heat-treated and gastrointestinal environments, whereas the antioxidant activity was significantly reduced under highly acidic conditions. The present study addresses the knowledge gap regarding the physicochemical properties of JCP-Ca and establishes a solid research foundation for its associated products.","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":null,"pages":null},"PeriodicalIF":6.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fochx.2024.101706","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this study was to prepare and characterize jellyfish collagen peptide (JCP)–calcium chelates (JCP-Ca) using peptides with different molecular weights. Further analysis revealed that the low-molecular-weight jellyfish collagen peptide (JCP1) had a higher chelation rate. Structural characterization showed that functional groups such as NH, CO, and -COO were involved in the formation of JCP-Ca, which shifted towards a more ordered and regular structure, and smaller-molecular-weight peptides were more likely to form a denser structure. In addition, JCPs chelated with calcium ions showed excellent antioxidant capacity. JCP-Ca showed good stability in heat-treated and gastrointestinal environments, whereas the antioxidant activity was significantly reduced under highly acidic conditions. The present study addresses the knowledge gap regarding the physicochemical properties of JCP-Ca and establishes a solid research foundation for its associated products.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.