Honglei Xi, Rijun Wang, Fulong Liang, Yesheng Chen, Guanghao Zhang, Bo Wang
{"title":"SiM-YOLO: A Wood Surface Defect Detection Method Based on the Improved YOLOv8","authors":"Honglei Xi, Rijun Wang, Fulong Liang, Yesheng Chen, Guanghao Zhang, Bo Wang","doi":"10.3390/coatings14081001","DOIUrl":null,"url":null,"abstract":"Wood surface defect detection is a challenging task due to the complexity and variability of defect types. To address these challenges, this paper introduces a novel deep learning approach named SiM-YOLO, which is built upon the YOLOv8 object detection framework. A fine-grained convolutional structure, SPD-Conv, is introduced with the aim of preserving detailed defect information during the feature extraction process, thus enabling the model to capture the subtle variations and complex details of wood surface defects. In the feature fusion stage, a SiAFF-PANet-based wood defect feature fusion module is designed to improve the model’s ability to focus on local contextual information and enhance defect localization. For classification and regression tasks, the multi-attention detection head (MADH) is employed to capture cross-channel information and the accurate spatial localization of defects. In addition, MPDIoU is employed to optimize the loss function of the model to reduce the leakage of detection due to defect overlap. The experimental results show that SiM-YOLO achieves superior performance compared to the state-of-the-art YOLO algorithm, with a 9.3% improvement in mAP over YOLOX and a 4.3% improvement in mAP over YOLOv8. The Grad-CAM visualization further illustrates that SiM-YOLO provides more accurate defect localization and effectively reduces misdetection and omission issues. This study highlights the effectiveness of SiM-YOLO for wood surface defect detection and offers valuable insights for future research and practical applications in quality control.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":"6 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14081001","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0
Abstract
Wood surface defect detection is a challenging task due to the complexity and variability of defect types. To address these challenges, this paper introduces a novel deep learning approach named SiM-YOLO, which is built upon the YOLOv8 object detection framework. A fine-grained convolutional structure, SPD-Conv, is introduced with the aim of preserving detailed defect information during the feature extraction process, thus enabling the model to capture the subtle variations and complex details of wood surface defects. In the feature fusion stage, a SiAFF-PANet-based wood defect feature fusion module is designed to improve the model’s ability to focus on local contextual information and enhance defect localization. For classification and regression tasks, the multi-attention detection head (MADH) is employed to capture cross-channel information and the accurate spatial localization of defects. In addition, MPDIoU is employed to optimize the loss function of the model to reduce the leakage of detection due to defect overlap. The experimental results show that SiM-YOLO achieves superior performance compared to the state-of-the-art YOLO algorithm, with a 9.3% improvement in mAP over YOLOX and a 4.3% improvement in mAP over YOLOv8. The Grad-CAM visualization further illustrates that SiM-YOLO provides more accurate defect localization and effectively reduces misdetection and omission issues. This study highlights the effectiveness of SiM-YOLO for wood surface defect detection and offers valuable insights for future research and practical applications in quality control.
CoatingsMaterials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍:
Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal:
* manuscripts regarding research proposals and research ideas will be particularly welcomed
* electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material