Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite

IF 2.9 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS Coatings Pub Date : 2024-09-18 DOI:10.3390/coatings14091201
Hongping Zhu, Jinheng Zhang, Fei Cheng, Jiangzhou Li, Bo Wu, Zhijie Zhao
{"title":"Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite","authors":"Hongping Zhu, Jinheng Zhang, Fei Cheng, Jiangzhou Li, Bo Wu, Zhijie Zhao","doi":"10.3390/coatings14091201","DOIUrl":null,"url":null,"abstract":"This study designed laser engraving and resin pre-coating (RPC) treatments on an aluminum alloy (AA) surface to construct through-the-thickness “epoxy pins” for improving the bonding strength with carbon fiber reinforced polymer (CFRP). A laser engraving treatment was used to create a pitted structure on the AA surface; higher wettability was acquired and greater vertical spaces were formed to impregnate epoxy resin, resulting in stronger mechanical interlocking. The RPC technique was further used to guide high-viscosity epoxy resin into pits to form the epoxy coatings and to minimize defects between the resin and the substrate. The bonding strength of the specimen treated with both laser engraving with a unit dimension of 0.3 mm and RPC increased up to 227.1% in comparison with that of the base. The failure modes of the hybrid composites changed from the debonding failure of the AA surface to the delamination-dominated failure of the laminated CFRP composites. It was confirmed that laser engraving is a feasible and effective method when combined with RPC for treating AAs to improve the bonding strength of AA-CFRP composites, which provides a reference for preparing high-performance hybrid composites with metals.","PeriodicalId":10520,"journal":{"name":"Coatings","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coatings","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/coatings14091201","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study designed laser engraving and resin pre-coating (RPC) treatments on an aluminum alloy (AA) surface to construct through-the-thickness “epoxy pins” for improving the bonding strength with carbon fiber reinforced polymer (CFRP). A laser engraving treatment was used to create a pitted structure on the AA surface; higher wettability was acquired and greater vertical spaces were formed to impregnate epoxy resin, resulting in stronger mechanical interlocking. The RPC technique was further used to guide high-viscosity epoxy resin into pits to form the epoxy coatings and to minimize defects between the resin and the substrate. The bonding strength of the specimen treated with both laser engraving with a unit dimension of 0.3 mm and RPC increased up to 227.1% in comparison with that of the base. The failure modes of the hybrid composites changed from the debonding failure of the AA surface to the delamination-dominated failure of the laminated CFRP composites. It was confirmed that laser engraving is a feasible and effective method when combined with RPC for treating AAs to improve the bonding strength of AA-CFRP composites, which provides a reference for preparing high-performance hybrid composites with metals.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在激光雕刻的铝合金表面形成环氧涂层,以加固与碳纤维复合材料的粘接处
本研究设计了在铝合金(AA)表面进行激光雕刻和树脂预涂层(RPC)处理的方法,以构建贯穿厚度的 "环氧树脂栓",从而提高与碳纤维增强聚合物(CFRP)的粘接强度。通过激光雕刻处理在铝合金表面形成凹坑结构,获得更高的润湿性,并形成更大的垂直空间来浸渍环氧树脂,从而实现更强的机械互锁。RPC 技术还用于引导高粘度环氧树脂进入凹坑,形成环氧涂层,并最大限度地减少树脂与基材之间的缺陷。与基底相比,经过单位尺寸为 0.3 毫米的激光雕刻和 RPC 处理的试样的粘接强度提高了 227.1%。混合复合材料的失效模式从 AA 表面的脱粘失效转变为层状 CFRP 复合材料以分层为主的失效。研究证实,激光雕刻结合 RPC 处理 AA 以提高 AA-CFRP 复合材料的结合强度是一种可行且有效的方法,为制备高性能金属混合复合材料提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Coatings
Coatings Materials Science-Surfaces, Coatings and Films
CiteScore
5.00
自引率
11.80%
发文量
1657
审稿时长
1.4 months
期刊介绍: Coatings is an international, peer-reviewed open access journal of coatings and surface engineering. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided. There are, in addition, unique features of this journal: * manuscripts regarding research proposals and research ideas will be particularly welcomed * electronic files or software regarding the full details of the calculation and experimental procedure - if unable to be published in a normal way - can be deposited as supplementary material
期刊最新文献
The Construction of a Small-Caliber Barrel Wear Model and a Study of the Barrel Wear Rule Influence of Oxygen and Nitrogen Flow Ratios on the Microstructure Evolution in AlCrTaTiZr High-Entropy Oxynitride Films Forming Epoxy Coatings on Laser-Engraved Surface of Aluminum Alloy to Reinforce the Bonding Joint with a Carbon Fiber Composite Shelf-Life Extension and Quality Changes of Fresh-Cut Apple via Sago and Soy-Oil-Based Edible Coatings Corrosion Resistance and In Vitro Biological Properties of TiO2 on MAO-Coated AZ31 Magnesium Alloy via ALD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1