Bin Feng, Zequn Liu, Nanlan Huang, Zhiping Xiao, Haomiao Zhang, Srbuhi Mirzoyan, Hanwen Xu, Jiaran Hao, Yinghui Xu, Ming Zhang, Sheng Wang
{"title":"A bioactivity foundation model using pairwise meta-learning","authors":"Bin Feng, Zequn Liu, Nanlan Huang, Zhiping Xiao, Haomiao Zhang, Srbuhi Mirzoyan, Hanwen Xu, Jiaran Hao, Yinghui Xu, Ming Zhang, Sheng Wang","doi":"10.1038/s42256-024-00876-w","DOIUrl":null,"url":null,"abstract":"The bioactivity of compounds plays an important role in drug development and discovery. Existing machine learning approaches have poor generalizability in bioactivity prediction due to the small number of compounds in each assay and incompatible measurements among assays. In this paper, we propose ActFound, a bioactivity foundation model trained on 1.6 million experimentally measured bioactivities and 35,644 assays from ChEMBL. The key idea of ActFound is to use pairwise learning to learn the relative bioactivity differences between two compounds within the same assay to circumvent the incompatibility among assays. ActFound further exploits meta-learning to jointly optimize the model from all assays. On six real-world bioactivity datasets, ActFound demonstrates accurate in-domain prediction and strong generalization across assay types and molecular scaffolds. We also demonstrate that ActFound can be used as an accurate alternative to the leading physics-based computational tool FEP+(OPLS4) by achieving comparable performance when using only a few data points for fine-tuning. Our promising results indicate that ActFound could be an effective bioactivity foundation model for compound bioactivity prediction, paving the way for machine-learning-based drug development and discovery. Traditional machine learning methods for drug development struggle with bioactivity prediction due to the limited number of compounds in each assay and assay incompatibilities. Feng et al. developed ActFound, a bioactivity foundation model trained by pairwise learning and meta-learning, that improves the accuracy and generalization of bioactivity prediction.","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"6 8","pages":"962-974"},"PeriodicalIF":18.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.nature.com/articles/s42256-024-00876-w","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The bioactivity of compounds plays an important role in drug development and discovery. Existing machine learning approaches have poor generalizability in bioactivity prediction due to the small number of compounds in each assay and incompatible measurements among assays. In this paper, we propose ActFound, a bioactivity foundation model trained on 1.6 million experimentally measured bioactivities and 35,644 assays from ChEMBL. The key idea of ActFound is to use pairwise learning to learn the relative bioactivity differences between two compounds within the same assay to circumvent the incompatibility among assays. ActFound further exploits meta-learning to jointly optimize the model from all assays. On six real-world bioactivity datasets, ActFound demonstrates accurate in-domain prediction and strong generalization across assay types and molecular scaffolds. We also demonstrate that ActFound can be used as an accurate alternative to the leading physics-based computational tool FEP+(OPLS4) by achieving comparable performance when using only a few data points for fine-tuning. Our promising results indicate that ActFound could be an effective bioactivity foundation model for compound bioactivity prediction, paving the way for machine-learning-based drug development and discovery. Traditional machine learning methods for drug development struggle with bioactivity prediction due to the limited number of compounds in each assay and assay incompatibilities. Feng et al. developed ActFound, a bioactivity foundation model trained by pairwise learning and meta-learning, that improves the accuracy and generalization of bioactivity prediction.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.