Ruaridh Mon-Williams, Gen Li, Ran Long, Wenqian Du, Christopher G. Lucas
{"title":"Embodied large language models enable robots to complete complex tasks in unpredictable environments","authors":"Ruaridh Mon-Williams, Gen Li, Ran Long, Wenqian Du, Christopher G. Lucas","doi":"10.1038/s42256-025-01005-x","DOIUrl":null,"url":null,"abstract":"<p>Completing complex tasks in unpredictable settings challenges robotic systems, requiring a step change in machine intelligence. Sensorimotor abilities are considered integral to human intelligence. Thus, biologically inspired machine intelligence might usefully combine artificial intelligence with robotic sensorimotor capabilities. Here we report an embodied large-language-model-enabled robot (ELLMER) framework, utilizing GPT-4 and a retrieval-augmented generation infrastructure, to enable robots to complete long-horizon tasks in unpredictable settings. The method extracts contextually relevant examples from a knowledge base, producing action plans that incorporate force and visual feedback and enabling adaptation to changing conditions. We tested ELLMER on a robot tasked with coffee making and plate decoration; these tasks consist of a sequence of sub-tasks from drawer opening to pouring, each benefiting from distinct feedback types and methods. We show that the ELLMER framework allows the robot to complete the tasks. This demonstration marks progress towards scalable, efficient and ‘intelligent robots’ able to complete complex tasks in uncertain environments.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"28 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-025-01005-x","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Completing complex tasks in unpredictable settings challenges robotic systems, requiring a step change in machine intelligence. Sensorimotor abilities are considered integral to human intelligence. Thus, biologically inspired machine intelligence might usefully combine artificial intelligence with robotic sensorimotor capabilities. Here we report an embodied large-language-model-enabled robot (ELLMER) framework, utilizing GPT-4 and a retrieval-augmented generation infrastructure, to enable robots to complete long-horizon tasks in unpredictable settings. The method extracts contextually relevant examples from a knowledge base, producing action plans that incorporate force and visual feedback and enabling adaptation to changing conditions. We tested ELLMER on a robot tasked with coffee making and plate decoration; these tasks consist of a sequence of sub-tasks from drawer opening to pouring, each benefiting from distinct feedback types and methods. We show that the ELLMER framework allows the robot to complete the tasks. This demonstration marks progress towards scalable, efficient and ‘intelligent robots’ able to complete complex tasks in uncertain environments.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.