Yixia Lu , Tao Chu , Siqi Huo , Guobo Huang , Zhiguang Xu , Jiabing Feng , Hongyan Xie , Pooya Jafari , Hao Wang , Pingan Song
{"title":"Green synthesis of a P/N/B-containing aggregate for boosting fire-retardancy of PA6/aluminum diethylphosphinate composites","authors":"Yixia Lu , Tao Chu , Siqi Huo , Guobo Huang , Zhiguang Xu , Jiabing Feng , Hongyan Xie , Pooya Jafari , Hao Wang , Pingan Song","doi":"10.1016/j.polymdegradstab.2024.110949","DOIUrl":null,"url":null,"abstract":"<div><p>The intrinsic flammability of polyamide 6 (PA6) has significantly impeded its broad application regardless of its balanced physical properties. Aluminum diethylphosphinate (ADP), as a P-containing fire retardant, has been demonstrated to be effective in reducing flammability of PA6 because of its dual-phase modes of action by creating an intact protective char layer and inhibiting the burning process. However, the efficiency of ADP needs to be further improved for creating cost-effective fire-retardant PA6, in addition to its relatively high cost. To boost its efficiency, we, here, report a P/N/B-containing aggregate (MBA) as an effective synergist via green self-assembly of melamine (MA), boric acid (BA) and amino trimethylene phosphonic acid (ATMP) in an aqueous medium. The results show that the inclusion of 5 wt% MBA and 10 wt% ADP leads to a significantly reduced peak heat release rate (PHRR) by 52.5% compared to neat PA6, in addition to a desired UL-94 V-0 rating. A synergistic effect of 55.4 % is observed between MBA and ADP in terms of the PHRR value. This work provides a facile green strategy for developing eco-friendly multiple elements-containing fire retardants, which can be used as fire retardants alone or high-efficiency synergists for other fire retardants.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 110949"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141391024002933/pdfft?md5=450319c8285d45adfbe20956abf7104b&pid=1-s2.0-S0141391024002933-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024002933","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The intrinsic flammability of polyamide 6 (PA6) has significantly impeded its broad application regardless of its balanced physical properties. Aluminum diethylphosphinate (ADP), as a P-containing fire retardant, has been demonstrated to be effective in reducing flammability of PA6 because of its dual-phase modes of action by creating an intact protective char layer and inhibiting the burning process. However, the efficiency of ADP needs to be further improved for creating cost-effective fire-retardant PA6, in addition to its relatively high cost. To boost its efficiency, we, here, report a P/N/B-containing aggregate (MBA) as an effective synergist via green self-assembly of melamine (MA), boric acid (BA) and amino trimethylene phosphonic acid (ATMP) in an aqueous medium. The results show that the inclusion of 5 wt% MBA and 10 wt% ADP leads to a significantly reduced peak heat release rate (PHRR) by 52.5% compared to neat PA6, in addition to a desired UL-94 V-0 rating. A synergistic effect of 55.4 % is observed between MBA and ADP in terms of the PHRR value. This work provides a facile green strategy for developing eco-friendly multiple elements-containing fire retardants, which can be used as fire retardants alone or high-efficiency synergists for other fire retardants.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.