Tong-Yu Bai, Xiang-Xin Xiao, Guan-Qi Zheng, Qin Zhang, Zi-Ni Wang, Li Chen, Bo-Wen Liu, Yu-Zhong Wang
{"title":"Fire-safe and mechanically robust polycarbonate composite enabled by novel copolymerization/macromolecular blending strategy","authors":"Tong-Yu Bai, Xiang-Xin Xiao, Guan-Qi Zheng, Qin Zhang, Zi-Ni Wang, Li Chen, Bo-Wen Liu, Yu-Zhong Wang","doi":"10.1016/j.polymdegradstab.2024.111056","DOIUrl":null,"url":null,"abstract":"<div><div>Polycarbonate is a widely used engineering plastic material, but its limited flame retardancy has restricted its application in high-end fields such as aviation and railways. In this study, we propose a novel copolymerization/macromolecular blending strategy to produce a high-performance, fire-safe polycarbonate composite. By copolymerizing with polydimethylsiloxane oligomer and blending with macromolecular polyarylate, the resulting PC-BPDMS<sub>5</sub>/PITR successfully achieved a UL-94 V-0 rating and a high limiting oxygen index value of 34.2 %. The peak heat release and total smoke release were significantly reduced by 45.2 % and 27.4 %, respectively, compared to pure PC. SEM, Raman, and XPS analyses confirmed the condensed-phase dominated flame-retardant mechanism, attributed to the char-forming ability of the polyarylate and polydimethylsiloxane segments. Polydimethylsiloxane segments can decompose to produce small molecules such as methane, and the left structure with silicon, which undergo cross-linking reactions with the substrate during combustion to promote char formation. The polyaromatic ring structure of PITR can also participate in the formation of a dense and stable char layer. The excellent compatibility between the polyarylate and the PC matrix, combined with the superior flexibility of polydimethylsiloxane, allowed the composite to maintain mechanical properties comparable to pure PC. Additionally, the increased molar volume resulted in a low dielectric constant for PC-BPDMS<sub>5</sub>/PITR. This work presents a promising approach for the development of high-performance polycarbonate composites.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"230 ","pages":"Article 111056"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003999","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Polycarbonate is a widely used engineering plastic material, but its limited flame retardancy has restricted its application in high-end fields such as aviation and railways. In this study, we propose a novel copolymerization/macromolecular blending strategy to produce a high-performance, fire-safe polycarbonate composite. By copolymerizing with polydimethylsiloxane oligomer and blending with macromolecular polyarylate, the resulting PC-BPDMS5/PITR successfully achieved a UL-94 V-0 rating and a high limiting oxygen index value of 34.2 %. The peak heat release and total smoke release were significantly reduced by 45.2 % and 27.4 %, respectively, compared to pure PC. SEM, Raman, and XPS analyses confirmed the condensed-phase dominated flame-retardant mechanism, attributed to the char-forming ability of the polyarylate and polydimethylsiloxane segments. Polydimethylsiloxane segments can decompose to produce small molecules such as methane, and the left structure with silicon, which undergo cross-linking reactions with the substrate during combustion to promote char formation. The polyaromatic ring structure of PITR can also participate in the formation of a dense and stable char layer. The excellent compatibility between the polyarylate and the PC matrix, combined with the superior flexibility of polydimethylsiloxane, allowed the composite to maintain mechanical properties comparable to pure PC. Additionally, the increased molar volume resulted in a low dielectric constant for PC-BPDMS5/PITR. This work presents a promising approach for the development of high-performance polycarbonate composites.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.