Robust Imidazopyridinium Covalent Organic Framework as Efficient Iodine Capturing Materials in Gaseous and Aqueous Environment.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-08-21 DOI:10.1002/smll.202404994
Gilles Matthys, Andreas Laemont, Nathalie De Geyter, Rino Morent, Roy Lavendomme, Pascal Van Der Voort
{"title":"Robust Imidazopyridinium Covalent Organic Framework as Efficient Iodine Capturing Materials in Gaseous and Aqueous Environment.","authors":"Gilles Matthys, Andreas Laemont, Nathalie De Geyter, Rino Morent, Roy Lavendomme, Pascal Van Der Voort","doi":"10.1002/smll.202404994","DOIUrl":null,"url":null,"abstract":"<p><p>The development of a high-performing adsorbent that can capture both iodine vapor from volatile nuclear waste and traces of iodine species from water is an important challenge, especially in industrially relevant process conditions. This study introduces novel imidazopyridinium-based covalent organic frameworks (COFs) through post-modification of a picolinaldehyde-based imine COF. These COFs demonstrate excellent iodine adsorption capacity, adsorption kinetics, and a high stability/recyclability in both vapor and water phases. Notably, one imidazopyridinium COF exhibits gaseous iodine uptake of 21 wt.% under dynamic adsorption conditions at 150 °C and a relative humidity of 50%, surpassing the performance of the currently used silver-based zeolite adsorbents (Ag@MOR (17wt.%)). Additionally, the same imidazopyridinium COFs can efficiently remove iodine species at a low concentration from aqueous solution. Seawater containing triiodide ions treated under dynamic flow-through conditions resulted in decreased concentrations down to the ppb level. The adsorption mechanisms for iodine and polyiodide species are elucidated for the imine COF and imidazopyridinium COFs; involving halogen bonding, hydrogen bonding, and charge-transfer complexes.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202404994","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of a high-performing adsorbent that can capture both iodine vapor from volatile nuclear waste and traces of iodine species from water is an important challenge, especially in industrially relevant process conditions. This study introduces novel imidazopyridinium-based covalent organic frameworks (COFs) through post-modification of a picolinaldehyde-based imine COF. These COFs demonstrate excellent iodine adsorption capacity, adsorption kinetics, and a high stability/recyclability in both vapor and water phases. Notably, one imidazopyridinium COF exhibits gaseous iodine uptake of 21 wt.% under dynamic adsorption conditions at 150 °C and a relative humidity of 50%, surpassing the performance of the currently used silver-based zeolite adsorbents (Ag@MOR (17wt.%)). Additionally, the same imidazopyridinium COFs can efficiently remove iodine species at a low concentration from aqueous solution. Seawater containing triiodide ions treated under dynamic flow-through conditions resulted in decreased concentrations down to the ppb level. The adsorption mechanisms for iodine and polyiodide species are elucidated for the imine COF and imidazopyridinium COFs; involving halogen bonding, hydrogen bonding, and charge-transfer complexes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为气态和水态环境中高效碘捕集材料的强效咪唑吡啶共价有机框架
开发一种既能从挥发性核废料中捕获碘蒸气,又能从水中捕获痕量碘物种的高性能吸附剂是一项重要挑战,尤其是在与工业相关的工艺条件下。本研究通过对以吡啶甲醛为基础的亚胺共价有机框架(COF)进行后修饰,引入了新型咪唑吡啶共价有机框架(COF)。这些 COF 具有出色的碘吸附能力、吸附动力学以及在气相和水相的高稳定性/可回收性。值得注意的是,在 150 °C 和相对湿度为 50% 的动态吸附条件下,一种咪唑吡啶 COF 的气态碘吸附量达到 21 wt.%,超过了目前使用的银基沸石吸附剂(Ag@MOR (17wt.%))。此外,同样的咪唑并吡啶鎓 COF 还能从水溶液中有效去除低浓度的碘。在动态流动条件下处理含有三碘离子的海水,可使浓度降低到 ppb 水平。阐明了亚胺 COF 和咪唑吡啶鎓 COF 对碘和多碘化物的吸附机理,包括卤素键、氢键和电荷转移复合物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Thermoelectric Cooling-Oriented Large Power Factor Realized in N-Type Bi2Te3 Via Deformation Potential Modulation and Giant Deformation Interfacial Engineering of Nickel Oxide-Perovskite Interface with Amino Acid Complexed NiO to Improve Perovskite Solar Cell Performance Laser Irradiation Induced Electronic Structure Modulation of the Palladium-Based Nanosheets for Efficient Electrocatalysts Infrared Stealth Coating with Tunable Structural Color Based on ZnO Spheres Interfacial Self-Assembly Nanostructures: Constructions and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1