The Anti-Metastatic Action of Oxyresveratrol via Suppression of Phosphoryl-ERK/-PKCα-Mediated Sp1/MMP1 Signaling in Human Renal Carcinoma Cells

IF 4.4 3区 医学 Q2 ENVIRONMENTAL SCIENCES Environmental Toxicology Pub Date : 2024-08-22 DOI:10.1002/tox.24400
Tsai-Kun Wu, Yi-Hsien Hsieh, Tung-Wei Hung, Yi-Chen Lin, Chia-Liang Lin, Yu-Jou Liu, Ying-Ru Pan, Jen-Pi Tsai
{"title":"The Anti-Metastatic Action of Oxyresveratrol via Suppression of Phosphoryl-ERK/-PKCα-Mediated Sp1/MMP1 Signaling in Human Renal Carcinoma Cells","authors":"Tsai-Kun Wu,&nbsp;Yi-Hsien Hsieh,&nbsp;Tung-Wei Hung,&nbsp;Yi-Chen Lin,&nbsp;Chia-Liang Lin,&nbsp;Yu-Jou Liu,&nbsp;Ying-Ru Pan,&nbsp;Jen-Pi Tsai","doi":"10.1002/tox.24400","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Oxyresveratrol (OxyR) exerts biological and pharmacological effects in a variety of tumor cells, including antioxidant action, antitumor activity, and proapoptotic effects. However, the regulation of targeted signaling pathways by OxyR and the mechanism underlying these effects in human renal cell carcinoma (RCC) have been less studied. We observed that OxyR at noncytotoxic doses did not affect the growth of human RCC cells or normal kidney HK2 cells. OxyR inhibited ACHN and Caki-1 cell migration and invasion through targeting matrix metalloproteinase 1 (MMP1) expression. Analysis of clinical databases showed that high MMP1 expression is associated with lower overall survival (OS) in these cancers (<i>p</i> &lt; 0.01). OxyR significantly inhibited the mRNA and protein expression of Sp1. Furthermore, luciferase assay results showed that OxyR inhibited Sp1 transcriptional activity. Additionally, OxyR preferentially suppressed the activation of ERK and PKCα. Treatment with U0126 (MEK inhibitor) or G06976 (PKCα inhibitor) clearly decreased Sp1 and MMP1 expression and inhibited RCC cell migration and invasion. In conclusion, OxyR may be a potential antitumor therapy for the inhibition of migration and invasion by controlling p-ERK/Sp1 and p-PKCα/Sp1-mediated MMP1 expression in RCC.</p>\n </div>","PeriodicalId":11756,"journal":{"name":"Environmental Toxicology","volume":"39 12","pages":"5264-5273"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/tox.24400","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Oxyresveratrol (OxyR) exerts biological and pharmacological effects in a variety of tumor cells, including antioxidant action, antitumor activity, and proapoptotic effects. However, the regulation of targeted signaling pathways by OxyR and the mechanism underlying these effects in human renal cell carcinoma (RCC) have been less studied. We observed that OxyR at noncytotoxic doses did not affect the growth of human RCC cells or normal kidney HK2 cells. OxyR inhibited ACHN and Caki-1 cell migration and invasion through targeting matrix metalloproteinase 1 (MMP1) expression. Analysis of clinical databases showed that high MMP1 expression is associated with lower overall survival (OS) in these cancers (p < 0.01). OxyR significantly inhibited the mRNA and protein expression of Sp1. Furthermore, luciferase assay results showed that OxyR inhibited Sp1 transcriptional activity. Additionally, OxyR preferentially suppressed the activation of ERK and PKCα. Treatment with U0126 (MEK inhibitor) or G06976 (PKCα inhibitor) clearly decreased Sp1 and MMP1 expression and inhibited RCC cell migration and invasion. In conclusion, OxyR may be a potential antitumor therapy for the inhibition of migration and invasion by controlling p-ERK/Sp1 and p-PKCα/Sp1-mediated MMP1 expression in RCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
活氧白藜芦醇通过抑制磷酰-ERK/-PKCα介导的人肾癌细胞 Sp1/MMP1 信号转导而发挥抗转移作用
氧基白藜芦醇(OxyR)可对多种肿瘤细胞产生生物和药理作用,包括抗氧化作用、抗肿瘤活性和促凋亡作用。然而,对于氧白藜芦醇在人类肾细胞癌(RCC)中对靶向信号通路的调控及其作用机制的研究较少。我们观察到,非细胞毒性剂量的 OxyR 不会影响人类 RCC 细胞或正常肾脏 HK2 细胞的生长。OxyR通过靶向基质金属蛋白酶1(MMP1)的表达,抑制了ACHN和Caki-1细胞的迁移和侵袭。对临床数据库的分析表明,MMP1的高表达与这些癌症较低的总生存率(OS)有关(p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Toxicology
Environmental Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
8.90%
发文量
261
审稿时长
4.5 months
期刊介绍: The journal publishes in the areas of toxicity and toxicology of environmental pollutants in air, dust, sediment, soil and water, and natural toxins in the environment.Of particular interest are: Toxic or biologically disruptive impacts of anthropogenic chemicals such as pharmaceuticals, industrial organics, agricultural chemicals, and by-products such as chlorinated compounds from water disinfection and waste incineration; Natural toxins and their impacts; Biotransformation and metabolism of toxigenic compounds, food chains for toxin accumulation or biodegradation; Assays of toxicity, endocrine disruption, mutagenicity, carcinogenicity, ecosystem impact and health hazard; Environmental and public health risk assessment, environmental guidelines, environmental policy for toxicants.
期刊最新文献
Se-Methylselenocysteine Ameliorates DEHP-Induced Ferroptosis in Testicular Sertoli Cells via the Nrf2/GPX4 Axis. Hypoxia-Associated GPNMB+ Macrophages Promote Malignant Progression of Colorectal Cancer and Its Related Risk Signature Are Powerful Predictive Tool for the Treatment of Colorectal Cancer Patients. Nimbolide Induces Cell Apoptosis via Mediating ER Stress-Regulated Apoptotic Signaling in Human Oral Squamous Cell Carcinoma. Correction to "Inflammatory Response and Endothelial Dysfunction in the Hearts of Mice Co-Exposed to SO2, NO2, and PM2.5". SERPING1 Reduces Cell Migration via ERK-MMP2-MMP-9 Cascade in Sorafenib- Resistant Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1