Infection with Helicobacter pylori (Hp) mostly occurs during childhood, and persistent infection may lead to severe gastric diseases and even gastric cancer. Currently, the primary method for eradicating Hp is through antibiotic treatment. However, the increasing multidrug resistance in Hp strains has diminished the effectiveness of antibiotic treatments. Vaccination could potentially serve as an effective intervention to resolve this issue.
Through extensive research and analysis of the vital protein characteristics involved in Hp infection, we aim to provide references for subsequent vaccine antigen selection. Additionally, we summarize the current research and development of Hp vaccines in order to provide assistance for future research.
Utilizing the databases PubMed and the Web of Science, a comprehensive search was conducted to compile articles pertaining to Hp antigens and vaccines. The salient aspects of these articles were then summarized to provide a detailed overview of the current research landscape in this field.
Several potential antigens have been identified and introduced through a thorough understanding of the infection process and pathogenic mechanisms of Hp. The conserved and widely distributed candidate antigens in Hp, such as UreB, HpaA, GGT, and NAP, are discussed. Proteins such as CagA and VacA, which have significant virulence effects but relatively poor conservatism, require further evaluation. Emerging antigens like HtrA and dupA have significant research value. In addition, vaccines based on these candidate antigens have been compiled and summarized.
Vaccines are a promising method for preventing and treating Hp. While some Hp vaccines have achieved promising results, mature products are not yet available on the market. Great efforts have been directed toward developing various types of vaccines, underscoring the need for developers to select appropriate antigens and vaccine formulations to improve success rates.