Multi-phase-field modeling of the dissolution behavior of stoichiometric particles on experimentally relevant length scales

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-22 DOI:10.1016/j.commatsci.2024.113288
{"title":"Multi-phase-field modeling of the dissolution behavior of stoichiometric particles on experimentally relevant length scales","authors":"","doi":"10.1016/j.commatsci.2024.113288","DOIUrl":null,"url":null,"abstract":"<div><p>The dissolution of stoichiometric particles within a melt plays a crucial role in various material processes. This study presents a comprehensive phase-field model to analyze the dissolution behavior of these stoichiometric particles under experimental conditions. Our approach addresses the classical phase-field challenges related to modeling stoichiometric compounds and scaling to experimentally relevant lengths in a multi-phase, multi-component context. To overcome the difficulties posed by stoichiometric compounds, we rederive the classical phase-field evolution equations for a multi-phase system, adopting a composition-independent free energy expression for the stoichiometric compound. Additionally, we extend Feyen’s high driving force model [Feyen and Moelans, <em>Acta Materialia</em>, 256 (2023)] to multi-component systems, allowing us to perform quantitative simulations for technologically relevant material systems at experimental length scales within a reasonable computing time. The model’s precision in capturing diffusion-controlled transformations, including dissolution, growth, and the Gibbs–Thomson effect, is validated against analytical solutions for a hypothetical system. The quantitative nature of the model is validated by applying it to the dissolution of Al<sub>2</sub>O<sub>3</sub> particles in CaO–Al<sub>2</sub>O<sub>3</sub>–SiO<sub>2</sub> slags. We break new ground by conducting three-dimensional simulations for a system size of <span><math><mrow><mn>875</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>×</mo><mn>875</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>×</mo><mn>875</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, directly comparable to confocal scanning laser microscopy experiments, where previous models were limited to two-dimensional simulations and a system size of <span><math><mrow><mn>2</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>×</mo><mn>2</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>. This validation underscores the model’s proficiency to quantitatively describe the diffusion-controlled dissolution of Al<sub>2</sub>O<sub>3</sub> at the experimentally relevant length scales.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005093","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The dissolution of stoichiometric particles within a melt plays a crucial role in various material processes. This study presents a comprehensive phase-field model to analyze the dissolution behavior of these stoichiometric particles under experimental conditions. Our approach addresses the classical phase-field challenges related to modeling stoichiometric compounds and scaling to experimentally relevant lengths in a multi-phase, multi-component context. To overcome the difficulties posed by stoichiometric compounds, we rederive the classical phase-field evolution equations for a multi-phase system, adopting a composition-independent free energy expression for the stoichiometric compound. Additionally, we extend Feyen’s high driving force model [Feyen and Moelans, Acta Materialia, 256 (2023)] to multi-component systems, allowing us to perform quantitative simulations for technologically relevant material systems at experimental length scales within a reasonable computing time. The model’s precision in capturing diffusion-controlled transformations, including dissolution, growth, and the Gibbs–Thomson effect, is validated against analytical solutions for a hypothetical system. The quantitative nature of the model is validated by applying it to the dissolution of Al2O3 particles in CaO–Al2O3–SiO2 slags. We break new ground by conducting three-dimensional simulations for a system size of 875μm×875μm×875μm, directly comparable to confocal scanning laser microscopy experiments, where previous models were limited to two-dimensional simulations and a system size of 2μm×2μm. This validation underscores the model’s proficiency to quantitatively describe the diffusion-controlled dissolution of Al2O3 at the experimentally relevant length scales.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在实验相关长度尺度上对化学计量粒子的溶解行为进行多相场建模
熔体中化学计量粒子的溶解在各种材料加工过程中起着至关重要的作用。本研究提出了一个全面的相场模型,用于分析实验条件下这些化学计量粒子的溶解行为。我们的方法解决了在多相、多组分背景下建立化学计量化合物模型并扩展到实验相关长度的经典相场难题。为了克服化学计量化合物带来的困难,我们重新演绎了多相系统的经典相场演化方程,采用了与成分无关的化学计量化合物自由能表达式。此外,我们还将费恩的高驱动力模型[Feyen 和 Moelans,Acta Materialia,256 (2023)]扩展到多组分系统,使我们能够在合理的计算时间内,在实验长度尺度上对技术相关的材料系统进行定量模拟。该模型在捕捉扩散控制的转化(包括溶解、生长和吉布斯-汤姆森效应)方面的精确性,与假设系统的分析解进行了对比验证。通过将模型应用于 CaO-Al2O3-SiO2 熔渣中 Al2O3 颗粒的溶解,验证了模型的定量性质。我们突破性地对 875μm×875μm×875μm 的系统大小进行了三维模拟,可直接与共聚焦扫描激光显微镜实验相媲美,而以前的模型仅限于二维模拟和 2μm×2μm 的系统大小。这一验证强调了该模型能够在实验相关的长度尺度上定量描述 Al2O3 的扩散控制溶解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1