QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-09-18 DOI:10.1016/j.commatsci.2024.113366
{"title":"QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions","authors":"","doi":"10.1016/j.commatsci.2024.113366","DOIUrl":null,"url":null,"abstract":"<div><p>Efficient and precise characterization of material properties is critical in quantum mechanical modeling. While Density Functional Theory (<span>DFT</span>) remains a foundational method for analyzing material properties, it faces scalability challenges and precision limitations, especially with complex materials. This study introduces <span>QuantumShellNet</span>, a novel vision-based approach that combines an orbital encoder and a physics-informed deep neural network. <span>QuantumShellNet</span> is specifically designed to rapidly and accurately predict ground-state eigenvalues in materials by leveraging electronic shell structures and their fermionic properties. Experiments conducted across a diverse range of elements and molecules show that <span>QuantumShellNet</span> outperforms traditional DFT as well as modern machine learning methods, including <span>PsiFormer</span> and <span>FermiNet</span>.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005871","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient and precise characterization of material properties is critical in quantum mechanical modeling. While Density Functional Theory (DFT) remains a foundational method for analyzing material properties, it faces scalability challenges and precision limitations, especially with complex materials. This study introduces QuantumShellNet, a novel vision-based approach that combines an orbital encoder and a physics-informed deep neural network. QuantumShellNet is specifically designed to rapidly and accurately predict ground-state eigenvalues in materials by leveraging electronic shell structures and their fermionic properties. Experiments conducted across a diverse range of elements and molecules show that QuantumShellNet outperforms traditional DFT as well as modern machine learning methods, including PsiFormer and FermiNet.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
QuantumShellNet:通过卷积使用电子壳结构和费米子特性预测材料的基态特征值
在量子力学建模中,高效、精确地表征材料特性至关重要。虽然密度泛函理论(DFT)仍然是分析材料特性的基础方法,但它面临着可扩展性挑战和精度限制,尤其是在复杂材料方面。本研究介绍了 QuantumShellNet,这是一种基于视觉的新方法,结合了轨道编码器和物理信息深度神经网络。QuantumShellNet 专门设计用于利用电子壳结构及其费米子特性,快速准确地预测材料的基态特征值。在各种元素和分子中进行的实验表明,QuantumShellNet 的性能优于传统的 DFT 以及包括 PsiFormer 和 FermiNet 在内的现代机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
Nanodroplet bouncing behaviors of bonded graphene-carbon nanotube hybrid film Atomistic simulation and machine learning predictions of mechanical response in nanotube-polymer composites considering filler morphology and aggregation High throughput screening of new piezoelectric materials using graph machine learning and knowledge graph approach MicroSim: A high-performance phase-field solver based on CPU and GPU implementations Introducing Materials Fingerprint (MatPrint): A novel method in graphical material representation and features compression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1