Doris Domart , Daniel F. Nadeau , Antoine Thiboult , François Anctil , Tadros Ghobrial , Yves T. Prairie , Alexis Bédard-Therrien , Alain Tremblay
{"title":"A global analysis of ice phenology for 3702 lakes and 1028 reservoirs across the Northern Hemisphere using Sentinel-2 imagery","authors":"Doris Domart , Daniel F. Nadeau , Antoine Thiboult , François Anctil , Tadros Ghobrial , Yves T. Prairie , Alexis Bédard-Therrien , Alain Tremblay","doi":"10.1016/j.coldregions.2024.104294","DOIUrl":null,"url":null,"abstract":"<div><p>As existing global lake ice studies have predominantly focused on medium to large lakes, and reservoir ice studies have been limited to regional scales, very few studies of ice phenology have combined both lakes and reservoirs of different sizes. This study aims to characterize the freeze-up and break-up dates of 3702 lakes and 1028 reservoirs from 1 to 31,000 km<sup>2</sup> across the Northern Hemisphere, and to analyze spatial patterns and relationships between ice phenological dates and driving factors. The freeze-up and break-up dates of these water bodies were retrieved from Sentinel-2 imagery using an ice detection algorithm through the Google Earth Engine platform from 2019 to 2023. The algorithm was verified by comparing phenology dates with an independent database based on observations from passive microwave sensors, with a mean absolute error of 18 days for both freeze-up and break-up dates. This newly established ice phenology database along with various geographic, morphometric, and climatic characteristics of the water bodies, was used to develop a random forest model for predicting ice phenology dates. While the predictive model performance is at a fair level (mean absolute error of 12 days for both freeze-up and break-up), challenges were encountered in certain high-elevation areas where cloudy conditions as well as black ice resulted in delayed freeze-up dates. Among the variables included in the random forest model, latitude and accumulation of freezing degree days were identified as the main drivers of ice phenology dates. Despite the challenges of applying a single, straightforward method on a global scale, this study has allowed the creation of a vast and comprehensive database of lake and reservoir freeze-up and break-up dates that can be used by the community to further analyze ice patterns.</p></div>","PeriodicalId":10522,"journal":{"name":"Cold Regions Science and Technology","volume":"227 ","pages":"Article 104294"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cold Regions Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165232X24001757","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
As existing global lake ice studies have predominantly focused on medium to large lakes, and reservoir ice studies have been limited to regional scales, very few studies of ice phenology have combined both lakes and reservoirs of different sizes. This study aims to characterize the freeze-up and break-up dates of 3702 lakes and 1028 reservoirs from 1 to 31,000 km2 across the Northern Hemisphere, and to analyze spatial patterns and relationships between ice phenological dates and driving factors. The freeze-up and break-up dates of these water bodies were retrieved from Sentinel-2 imagery using an ice detection algorithm through the Google Earth Engine platform from 2019 to 2023. The algorithm was verified by comparing phenology dates with an independent database based on observations from passive microwave sensors, with a mean absolute error of 18 days for both freeze-up and break-up dates. This newly established ice phenology database along with various geographic, morphometric, and climatic characteristics of the water bodies, was used to develop a random forest model for predicting ice phenology dates. While the predictive model performance is at a fair level (mean absolute error of 12 days for both freeze-up and break-up), challenges were encountered in certain high-elevation areas where cloudy conditions as well as black ice resulted in delayed freeze-up dates. Among the variables included in the random forest model, latitude and accumulation of freezing degree days were identified as the main drivers of ice phenology dates. Despite the challenges of applying a single, straightforward method on a global scale, this study has allowed the creation of a vast and comprehensive database of lake and reservoir freeze-up and break-up dates that can be used by the community to further analyze ice patterns.
期刊介绍:
Cold Regions Science and Technology is an international journal dealing with the science and technical problems of cold environments in both the polar regions and more temperate locations. It includes fundamental aspects of cryospheric sciences which have applications for cold regions problems as well as engineering topics which relate to the cryosphere.
Emphasis is given to applied science with broad coverage of the physical and mechanical aspects of ice (including glaciers and sea ice), snow and snow avalanches, ice-water systems, ice-bonded soils and permafrost.
Relevant aspects of Earth science, materials science, offshore and river ice engineering are also of primary interest. These include icing of ships and structures as well as trafficability in cold environments. Technological advances for cold regions in research, development, and engineering practice are relevant to the journal. Theoretical papers must include a detailed discussion of the potential application of the theory to address cold regions problems. The journal serves a wide range of specialists, providing a medium for interdisciplinary communication and a convenient source of reference.