Bayesian inverse inference of material properties from microstructure images

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Computational Materials Science Pub Date : 2024-08-24 DOI:10.1016/j.commatsci.2024.113306
{"title":"Bayesian inverse inference of material properties from microstructure images","authors":"","doi":"10.1016/j.commatsci.2024.113306","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we introduce a Bayesian framework designed for inverse inference, aiming to predict material properties/process parameters from microstructure images. The integration of Bayesian inference techniques with deep generative models establishes a robust tool for applications in materials science, particularly in material characterization and property control. This integration provides a novel approach to clarifying the reliability of predictions. The application of this framework to a sample problem involving the prediction of material properties from artificial dual-phase steel microstructures demonstrates its capability to estimate these properties while accounting for prediction uncertainties. Moreover, even in comparison to conventional regression methods in terms of point estimation, the proposed framework exhibits superior accuracy in prediction. These results clearly illustrate that the framework presented in this paper constitutes a powerful tool for achieving efficient material design.</p></div>","PeriodicalId":10650,"journal":{"name":"Computational Materials Science","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0927025624005275/pdfft?md5=9f067d3c03610725cf3e56dd3c8b6ab4&pid=1-s2.0-S0927025624005275-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927025624005275","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we introduce a Bayesian framework designed for inverse inference, aiming to predict material properties/process parameters from microstructure images. The integration of Bayesian inference techniques with deep generative models establishes a robust tool for applications in materials science, particularly in material characterization and property control. This integration provides a novel approach to clarifying the reliability of predictions. The application of this framework to a sample problem involving the prediction of material properties from artificial dual-phase steel microstructures demonstrates its capability to estimate these properties while accounting for prediction uncertainties. Moreover, even in comparison to conventional regression methods in terms of point estimation, the proposed framework exhibits superior accuracy in prediction. These results clearly illustrate that the framework presented in this paper constitutes a powerful tool for achieving efficient material design.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据微观结构图像对材料特性进行贝叶斯反推分析
在本文中,我们介绍了一个专为逆推理设计的贝叶斯框架,旨在从微观结构图像中预测材料特性/工艺参数。贝叶斯推理技术与深度生成模型的整合为材料科学的应用,尤其是材料表征和性能控制领域的应用,提供了一种强大的工具。这种整合提供了一种明确预测可靠性的新方法。将这一框架应用于一个涉及人工双相钢微结构材料特性预测的样本问题,证明了它在考虑预测不确定性的同时估计这些特性的能力。此外,即使在点估算方面与传统回归方法相比,所提出的框架也表现出更高的预测精度。这些结果清楚地表明,本文提出的框架是实现高效材料设计的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Materials Science
Computational Materials Science 工程技术-材料科学:综合
CiteScore
6.50
自引率
6.10%
发文量
665
审稿时长
26 days
期刊介绍: The goal of Computational Materials Science is to report on results that provide new or unique insights into, or significantly expand our understanding of, the properties of materials or phenomena associated with their design, synthesis, processing, characterization, and utilization. To be relevant to the journal, the results should be applied or applicable to specific material systems that are discussed within the submission.
期刊最新文献
QuantumShellNet: Ground-state eigenvalue prediction of materials using electronic shell structures and fermionic properties via convolutions Computational insights into the tailoring of photoelectric properties in graphene quantum dot-Ru(II) polypyridyl nanocomposites Coexisting Type-I nodal Loop, Hybrid nodal loop and nodal surface in electride Li5Sn Effect of very slow O diffusion at high temperature on very fast H diffusion in the hydride ion conductor LaH2.75O0.125 Equivariance is essential, local representation is a need: A comprehensive and critical study of machine learning potentials for tobermorite phases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1