{"title":"Genome-wide characterization of the PAO gene family reveals the positive role of BnaC.PAO1.a gene in freezing tolerance in Brassica napus L.","authors":"","doi":"10.1016/j.envexpbot.2024.105945","DOIUrl":null,"url":null,"abstract":"<div><p>Rapeseed (<em>Brassica napus</em> L.) is a globally significant overwintering oilseed crop. Polyamine oxidase (PAO), an evolutionarily conserved family of FAD-binding proteins, plays crucial roles in plant growth, development, and response to abiotic stress. However, there is a scarcity of systematic identification and functional analysis of the <em>PAO</em> gene family in rapeseed. In this study, we identified 8, 7, 9, 16, 14 and 13 <em>PAO</em> genes in the genomes of <em>B. rapa</em>, <em>B. nigra</em>, <em>B. oleracea, B. napus, B. juncea and B. carinata</em>, respectively, which can be categorized into three subgroups: PAO1, PAO2/3/4, and PAO5. Molecular evolutionary analyses revealed a high conservation of <em>PAO</em> genes in <em>Brassicaceae</em> plants. RNA-seq and RT-qPCR analyses demonstrated the different expression patterns of different subgroups of <em>BnaPAO</em> genes in various tissues and under different treatments in rapeseed. Remarkably, among those <em>PAO</em> genes, only <em>BnaPAO1</em> genes (<em>BnaA.PAO1.a and BnaC.PAO1.a</em>) were strongly induced by freezing stress. Further analysis confirmed that overexpression of <em>BnaC.PAO1.a</em> significantly improved the freezing tolerance of rapeseed by scavenging ROS. These findings provide a foundation for understanding the biological functions of <em>PAO</em> genes in response to freezing stress in rapeseed.</p></div>","PeriodicalId":11758,"journal":{"name":"Environmental and Experimental Botany","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Experimental Botany","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098847224003034","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Rapeseed (Brassica napus L.) is a globally significant overwintering oilseed crop. Polyamine oxidase (PAO), an evolutionarily conserved family of FAD-binding proteins, plays crucial roles in plant growth, development, and response to abiotic stress. However, there is a scarcity of systematic identification and functional analysis of the PAO gene family in rapeseed. In this study, we identified 8, 7, 9, 16, 14 and 13 PAO genes in the genomes of B. rapa, B. nigra, B. oleracea, B. napus, B. juncea and B. carinata, respectively, which can be categorized into three subgroups: PAO1, PAO2/3/4, and PAO5. Molecular evolutionary analyses revealed a high conservation of PAO genes in Brassicaceae plants. RNA-seq and RT-qPCR analyses demonstrated the different expression patterns of different subgroups of BnaPAO genes in various tissues and under different treatments in rapeseed. Remarkably, among those PAO genes, only BnaPAO1 genes (BnaA.PAO1.a and BnaC.PAO1.a) were strongly induced by freezing stress. Further analysis confirmed that overexpression of BnaC.PAO1.a significantly improved the freezing tolerance of rapeseed by scavenging ROS. These findings provide a foundation for understanding the biological functions of PAO genes in response to freezing stress in rapeseed.
期刊介绍:
Environmental and Experimental Botany (EEB) publishes research papers on the physical, chemical, biological, molecular mechanisms and processes involved in the responses of plants to their environment.
In addition to research papers, the journal includes review articles. Submission is in agreement with the Editors-in-Chief.
The Journal also publishes special issues which are built by invited guest editors and are related to the main themes of EEB.
The areas covered by the Journal include:
(1) Responses of plants to heavy metals and pollutants
(2) Plant/water interactions (salinity, drought, flooding)
(3) Responses of plants to radiations ranging from UV-B to infrared
(4) Plant/atmosphere relations (ozone, CO2 , temperature)
(5) Global change impacts on plant ecophysiology
(6) Biotic interactions involving environmental factors.