Shu Wang, Muhammad Ali Al-Radhawi, Douglas A Lauffenburger, Eduardo D Sontag
{"title":"Recovering biomolecular network dynamics from single-cell omics data requires three time points.","authors":"Shu Wang, Muhammad Ali Al-Radhawi, Douglas A Lauffenburger, Eduardo D Sontag","doi":"10.1038/s41540-024-00424-7","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These \"dynamical phenotypes\" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-024-00424-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-cell omics technologies can measure millions of cells for up to thousands of biomolecular features, enabling data-driven studies of complex biological networks. However, these high-throughput experimental techniques often cannot track individual cells over time, thus complicating the understanding of dynamics such as time trajectories of cell states. These "dynamical phenotypes" are key to understanding biological phenomena such as differentiation fates. We show by mathematical analysis that, in spite of high dimensionality and lack of individual cell traces, three time-points of single-cell omics data are theoretically necessary and sufficient to uniquely determine the network interaction matrix and associated dynamics. Moreover, we show through numerical simulations that an interaction matrix can be accurately determined with three or more time-points even in the presence of sampling and measurement noise typical of single-cell omics. Our results can guide the design of single-cell omics time-course experiments, and provide a tool for data-driven phase-space analysis.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.