Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series.

IF 3.5 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY NPJ Systems Biology and Applications Pub Date : 2025-02-15 DOI:10.1038/s41540-025-00489-y
Shuhao Mei, Xin Li, Yuxi Zhou, Jiahao Xu, Yong Zhang, Yuxuan Wan, Shan Cao, Qinghao Zhao, Shijia Geng, Junqing Xie, Shengyong Chen, Shenda Hong
{"title":"Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series.","authors":"Shuhao Mei, Xin Li, Yuxi Zhou, Jiahao Xu, Yong Zhang, Yuxuan Wan, Shan Cao, Qinghao Zhao, Shijia Geng, Junqing Xie, Shengyong Chen, Shenda Hong","doi":"10.1038/s41540-025-00489-y","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry (Volume-Flow time series) to detect COPD, but they are not adept at predicting future COPD risk based on subtle data patterns. In this study, we introduce a novel deep learning-based approach, DeepSpiro, aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components: SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-pattern through key patches of varying lengths, SpiroExplainer for integrating heterogeneous data and explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of undiagnosed high-risk patients based on key patch concavity, with prediction horizons of 1-5 years, or even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In summary, DeepSpiro can effectively predict the long-term progression of COPD disease.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"18"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830002/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00489-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic Obstructive Pulmonary Disease (COPD) is a chronic lung condition characterized by airflow obstruction. Current diagnostic methods primarily rely on identifying prominent features in spirometry (Volume-Flow time series) to detect COPD, but they are not adept at predicting future COPD risk based on subtle data patterns. In this study, we introduce a novel deep learning-based approach, DeepSpiro, aimed at the early prediction of future COPD risk. DeepSpiro consists of four key components: SpiroSmoother for stabilizing the Volume-Flow curve, SpiroEncoder for capturing volume variability-pattern through key patches of varying lengths, SpiroExplainer for integrating heterogeneous data and explaining predictions through volume attention, and SpiroPredictor for predicting the disease risk of undiagnosed high-risk patients based on key patch concavity, with prediction horizons of 1-5 years, or even longer. Evaluated on the UK Biobank dataset, DeepSpiro achieved an AUC of 0.8328 for COPD detection and demonstrated strong predictive performance for future COPD risk (p-value < 0.001). In summary, DeepSpiro can effectively predict the long-term progression of COPD disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NPJ Systems Biology and Applications
NPJ Systems Biology and Applications Mathematics-Applied Mathematics
CiteScore
5.80
自引率
0.00%
发文量
46
审稿时长
8 weeks
期刊介绍: npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology. We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.
期刊最新文献
Cross-species transcriptomics translation reveals a role for the unfolded protein response in Mycobacterium tuberculosis infection. Deep learning for detecting and early predicting chronic obstructive pulmonary disease from spirogram time series. Mathematical modeling of multicellular tumor spheroids quantifies inter-patient and intra-tumor heterogeneity. Overall biomass yield on multiple nutrient sources. Modeling critical dosing strategies for stromal-induced resistance to cancer therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1